

Operating Instructions

Fronius Symo GEN24 3.0 / 3.0 Plus / 4.0 / 4.0 Plus 5.0 / 5.0 Plus

FR | Instructions de service

Sommaire

Consignes de sécurité	
Explication des consignes de sécurité	
Conventions de présentation	
Sécurité	
Généralités	
Conditions environnementales	
Personnel qualifié	10
Données relatives aux valeurs des émissions sonores	
Mesures CEM	10
Courant de secours	
Sécurité des données	
Droits d'auteur	
Mise à la terre (PE)	1
Informations générales	1;
Fronius Symo GEN24	1
Concept d'appareil	
Aperçu des fonctions	
Fronius UP	10
Contenu de la livraison	
Utilisation conforme	
Concept thermique	
Fronius Solar.web	
Communication locale	
Les différents modes de service	
Modes de service - Signification des symboles	
Mode de service - Onduleur avec batterie	
Mode de service - Onduleur avec batterie et plusieurs Smart Meter	20
Mode de service - Onduleur avec batterie, couplé AC à un autre onduleur	
Mode de service - Onduleur avec batterie et Ohmpilot	
Mode de service - Onduleur avec batterie et autre onduleur	23
Direction du flux d'énergie de l'onduleur	
États de fonctionnement (uniquement pour les systèmes de batterie)	
Mode économie d'énergie	
Généralités	
Conditions de déconnexion	
Conditions d'activation.	
Cas particulier	
Affichage du mode économie d'énergie	
Batteries adaptées	
Généralités	
BYD Battery-Box Premium	
LG FLEX	
Démarrage manuel du système.	
Configuration	26
Démarrage manuel de la batterie après l'arrêt du système	
Démarrer le mode alimentation en courant de secours après l'arrêt du système	
Protection des personnes et de l'appareil	
Protection centrale du réseau et de l'installation	
WSD (Wired Shut Down)	
Unité de surveillance des courants résiduels	
Surveillance d'isolation	
AFCI - Détection d'arc électrique (Arc Guard)	
État sécurisé	30
Éléments de commande et connexions	
Zone de raccordement	
Séparation de la zone de raccordement	32

Borne d'électrode de terre	32
Sectionneur DC	
Zone de communication de données	33
Fonctions des boutons et LED d'état	
Schéma de connexion interne des entrées/sorties	
Option courant de secours – point PV (OP)	39
Généralités	41
Explication - PV Point/PV Point Comfort	
PV Point (OP)	
PV Point Comfort	
Installation	43
Généralités	45
Système de raccord rapide	45
Informations sur l'appareil	45
Compatibilité des composants périphériques	
Choix du site et position de montage	47
Choix de l'emplacement de l'onduleur	
Choix de l'emplacement des batteries externes	
Position de montage de l'onduleur	49
Monter le support de fixation et accrocher l'onduleur	
Choix du matériau de fixation	51
Caractéristiques du support de fixation	
Ne pas déformer le support de fixation	51
Monter le support de fixation sur un mur	
Monter le support de fixation sur un mât ou un support	52
Monter le support de fixation sur des rails de montage	53
Suspendre l'onduleur au support de fixation	53
Conditions de raccordement de l'onduleur	54
Types de câbles différents	
Câbles autorisés pour la connexion électrique	
Câbles autorisés pour le connecteur de communication des données	55
Diamètre du câble AC	56
Diamètre du câble DC	56
Protection maximale par fusible côté courant alternatif	56
Raccordement de l'onduleur au réseau électrique public (côté AC)	58
Sécurité	58
Raccorder l'onduleur au réseau électrique public (côté AC)	58
Raccordement des chaînes de modules solaires à l'onduleur	61
Généralités sur les modules solaires	61
Sécurité	61
Généralités générateur photovoltaïque	
Configuration du générateur photovoltaïque3 - 5 kW	62
Raccorder les chaînes de modules solaires à l'onduleur	
Brancher la batterie à l'onduleur	67
Sécurité	
Raccorder la batterie côté DC	
Raccorder le conducteur de terre de la batterie LG FLEX	
Courant de secours - Connecter le point PV (OP)	72
Sécurité	72
Installation	•
Tester le mode d'alimentation en courant de secours	
Raccorder le câble de communication de données	77
Participant Modbus	
Poser le câble de communication de données	
Connecter le câble de communication de la batterie	80
Résistances de terminaison	
Installer le WSD (Wired Shut Down)	82
Raccorder et mettre en service l'onduleur	

Fermer la zone de raccordement/le couvercle du boîtier de l'onduleur et le mettre vice	
Première mise en service de l'onduleur	
Installation avec l'application	
Installation avec le navigateur	
Mettre l'onduleur hors tension et le rallumer	
Mettre l'onduleur hors tension et le rallumer	
Paramètres – Interface utilisateur de l'onduleur	
Paramètres utilisateur	
Connexion utilisateur	
Sélectionner la langue	
Configuration de l'appareil	
Composants	
Fonctions etE/S	
Demand Response Modes (DRM)	
Onduleur	
Gestion de l'énergie	
Charge de batterie maximale autorisée à partir du réseau public	
Gestion de la batterie	
Exemples - Gestion de la batterie en fonction de l'heure	
Règles autorisées de contrôle de la batterie	
Réduction de puissance photovoltaïque	
Gestion de la charge	
Optimisation de l'autoconsommation	
Système	
Généralités	
Mise à jour	
Assistant de mise en service	
Rétablir les réglages d'usine	
Journal des événements	
Informations	
Gestionnaire de licences	
Assistance	
Communication	
Réseau	
Modbus	
Commande cloud	
Solar API	
Fronius Solar.web	
Services Internet	
Exigences en matière de sécurité et de réseau	
Setup pays	
Demander les codes de l'onduleur dans Solar.SOS	
Limite d'injection	
Limite d'injection - Exemples	
Limite d'injection dynamique avec plusieurs onduleurs	
Gestion de la puissance E/S	
Schéma de connexions – 4 relais	
Paramètres Gestion de puissance E/S – 4 relais	
Schéma de connexions – 3 relais	
Paramètres Gestion de puissance E/S — 3 relais	
Schéma de connexions – 2 relais	
Paramètres Gestion de puissance E/S – 2 relais	
Schéma de connexions – 1 relais	
Paramètres Gestion de puissance E/S — 1 relais	
Connecter le récepteur de télécommande centralisée à plusieurs onduleurs	
ptions	1
Protection contro la curtonoian SPD	
Protoction contro la guirtancian CDI)	

Généralités	13
Sécurité	13
Contenu de la livraison	
Mettre l'onduleur hors tension	
Installation	
Mettre en service l'onduleur	
DC Connector Kit GEN24	
Généralités	
Généralités sur les modules solaires.	
Sécurité	
Contenu de la livraison	
Mettre l'onduleur hors tension	
Installation	14
Mettre en service l'onduleur	14
PV Point Comfort	
Sécurité	15
Contenu de la livraison	
Mettre l'onduleur hors tension	
Installation	
Mettre en service l'onduleur	
Configurer le PV Point Comfort	
Tester le mode d'alimentation en courant de secours	
rester te mode d'atimentation en courant de secours	1
Annexe	10
Maintenance, entretien et élimination	10
Généralités	10
Maintenance	
Nettoyage	
Sécurité	
Fonctionnement dans des environnements soumis à un fort dégagement de poussière	
Élimination	
Conditions de garantie	
Garantie constructeur Fronius	
Messages d'état et solutions	
Affichage	
Messages d'état	
Caractéristiques techniques	10
Fronius Symo GEN24 3.0 / 3.0 Plus	
Fronius Symo GEN24 4.0 / 4.0 Plus.	
Fronius Symo GEN24 5.0 / 5.0 Plus	1
WLAN	1
Caractéristiques techniques Protection contre la surtension DC SPD type 1+2 GEN2	4 18
Explication des notes de bas de page	18
Sectionneur DC intégré	
Sectionneur DC intégré	
Schémas des connexions	1
Francisco Compo OFNO (at DVD Dattern Day December 1970/197	
Fronius Symo GEN24 et BYD Battery-Box Premium HVS/HV	
Schéma de connexions	1
Fronius Symo GEN24 avec 2 BYD Battery-Box Premium HVS/HV connectées en parallèl	
Schéma de connexions	
Fronius Symo GEN24 avec 3 BYD Battery-Box Premium HVS/HV connectées en parallèl	
Schéma de connexions	
Fronius Symo GEN24 et LG RESU FLEX	1
Schéma de connexions	1
Borne de courant de secours – Point PV (OP)	1
Schéma de connexions	
Borne de courant de secours - PV Point (OP) Australie	19
Schéma de connexions	
Borne de courant de secours – PV Point (OP) avec batterie seulement pour la France	
Schéma de connexions	
CONTOUR AC CONTROLICATION	<u></u>

Borne de courant de secours - PV Point (OP) commutation manuelle	192 192 193
Schéma de connexionsProtection contre la surtension SPDSchéma de connexions	193 194 194
Dimensions de l'onduleur	195
Fronius Symo GEN24 3 - 5 kWFronius Symo GEN24 3 - 5 kW	197 197

Consignes de sécurité

Explication des consignes de sécurité

AVERTISSEMENT!

Signale une situation potentiellement dangereuse.

Si elle n'est pas évitée, elle peut entraîner des blessures graves et mortelles.

⚠ ATTENTION!

Signale une situation susceptible de provoquer des dommages.

Si elle n'est pas évitée, elle peut entraîner des blessures légères ou minimes, ainsi que des dommages matériels.

REMARQUE!

Signale la possibilité de mauvais résultats de travail et de dommages sur l'équipement.

Soyez extrêmement attentif lorsque vous voyez l'un des symboles illustrés dans le chapitre « Consignes de sécurité ».

Conventions de présentation

Afin d'accroître la lisibilité et la compréhension de la documentation, les conventions de présentation décrites ci-dessous ont été établies.

Conseils d'utilisation

IMPORTANT! Signale des conseils d'utilisation et d'autres informations utiles. Cette mention ne signale pas une situation dangereuse ou susceptible de provoquer des dommages.

Logiciel

Les fonctions logicielles et les éléments d'une interface utilisateur graphique (par ex. boutons, entrées du menu) sont mis en évidence dans le texte avec cette distinction.

Exemple: Cliquer sur le bouton Enregistrer.

Instructions de manipulation

- Les étapes de manipulation sont représentées avec une numérotation continue.
 - Ce symbole indique le résultat de l'étape de manipulation ou de l'ensemble de l'instruction de manipulation.

Sécurité

ATTENTION!

Risque d'écrasement en cas de mauvaise manipulation des pièces d'assemblage et de raccordement.

Cela peut entraîner des blessures aux membres.

- ▶ Utiliser les poignées intégrées pour soulever, poser et accrocher l'onduleur.
- Lors de la fixation des pièces d'assemblage, s'assurer qu'aucun membre ne se trouve entre la pièce et l'onduleur.
- Ne pas saisir le mécanisme de verrouillage et de déverrouillage des différents pôles des bornes de raccordement.

Généralités

Cet appareil est fabriqué selon l'état actuel de la technique et tient compte des consignes techniques de sécurité en vigueur. En cas d'erreur de manipulation ou de mauvaise utilisation, il existe un risque :

- de blessure et de mort pour l'utilisateur ou des tiers ;
- de dommages pour l'appareil et les autres biens de l'exploitant.

Toutes les personnes concernées par la mise en service, la maintenance et la remise en état de l'appareil doivent :

- posséder les qualifications correspondantes ;
- connaître le maniement des installations électriques ;
- lire attentivement et suivre avec précision les prescriptions des présentes Instructions de service.

En complément des présentes Instructions de service, les consignes générales et locales en vigueur concernant la prévention des accidents et la protection de l'environnement doivent être respectées.

Concernant les avertissements de sécurité et de danger présents sur l'appareil, veiller à :

- Veiller à leur lisibilité permanente ;
- ne pas les détériorer ;
- ne pas les retirer ;
- ne pas les recouvrir, ni coller d'autres autocollants par-dessus, ni les peindre.

Faire fonctionner l'appareil uniquement quand tous les dispositifs de sécurité sont pleinement opérationnels. Si les dispositifs de sécurité ne sont pas pleinement opérationnels, il existe un risque :

- de blessure et de mort pour l'utilisateur ou des tiers ;
- de dommages pour l'appareil et les autres biens de l'exploitant.

Les dispositifs de sécurité dont la fonctionnalité n'est pas totale doivent être remis en état par une entreprise spécialisée agréée avant la mise en marche de l'appareil.

Ne jamais mettre les dispositifs de sécurité hors circuit ou hors service.

Les emplacements des avertissements de sécurité et de danger présents sur l'appareil se trouvent au chapitre « Informations sur l'appareil » des instructions de service de l'appareil.

Éliminer les pannes qui menacent la sécurité avant de mettre l'appareil en marche.

Conditions environnementales

Le fait de faire fonctionner ou de stocker l'appareil en dehors des limites fixées est considéré comme une utilisation incorrecte. Le fabricant n'est pas responsable des dommages en résultant.

Personnel qualifié

Les informations contenues dans les présentes Instructions de service sont exclusivement destinées au personnel technique qualifié. Une décharge électrique peut être mortelle. Ne pas effectuer d'opérations autres que celles indiquées dans la documentation. Ceci s'applique même si vous possédez les qualifications correspondantes.

Tous les câbles doivent être solides, intacts, isolés et de capacité suffisante. Faire réparer sans délai les connexions lâches, les câbles endommagés ou sous-dimensionnés par une entreprise spécialisée agréée.

Les travaux de maintenance et de remise en état ne doivent être réalisés que par une entreprise spécialisée agréée.

Les pièces provenant d'autres fournisseurs n'offrent pas de garantie de construction et de fabrication conformes aux exigences de qualité et de sécurité. Utiliser uniquement des pièces de rechange d'origine.

Ne réaliser aucune modification, installation ou transformation sur l'appareil sans autorisation du fabricant.

Remplacer immédiatement les composants endommagés ou les faire remplacer.

Données relatives aux valeurs des émissions sonores

Le niveau de pression acoustique de l'onduleur est indiqué dans les **Caractéris**tiques techniques.

Grâce à une régulation électronique de la température, le bruit du refroidissement de l'appareil est réduit au minimum et dépend de la puissance transformée, de la température ambiante, du niveau de propreté de l'appareil, etc.

Une valeur d'émission rapportée au poste de travail ne peut pas être indiquée pour cet appareil, car le niveau de pression acoustique dépend fortement de la situation de montage, de la qualité du réseau, des cloisons environnantes et des caractéristiques générales du local.

Mesures CEM

Dans certains cas, des influences peuvent se manifester dans la zone d'application prévue malgré le respect des valeurs limites d'émissions normalisées (p. ex. en présence d'appareils sensibles sur le site d'installation ou lorsque ce dernier est situé à proximité de récepteurs radio ou TV). L'exploitant est alors tenu de prendre des mesures pour éliminer les dysfonctionnements.

Courant de secours

Le présent système possède des fonctions d'alimentation en courant de secours. En cas de panne du réseau public, une alimentation électrique de remplacement peut être mise en place.

En cas d'installation automatique d'une alimentation en courant de secours, un **Avertissement – Alimentation en courant de secours** (https://www.fronius.com/en/search-page, référence : 42,0409,0275) doit être apposé sur le tableau de distribution électrique.

Lors de travaux de maintenance et d'installation sur le réseau domestique, une isolation du côté du réseau ainsi qu'une désactivation de l'alimentation électrique de remplacement par l'ouverture du sectionneur DC intégré sur l'onduleur sont nécessaires.

Le fonctionnement des dispositifs de protection différentiels à courant résiduel pour l'alimentation en courant de secours doit être vérifié à intervalles réguliers (selon les indications du fabricant), au moins deux fois par an.

Une description de l'exécution du mode d'essai se trouve sur la check-list - Alimentation en courant de secours (https://www.fronius.com/en/search-page, référence : 42,0426,0365).

En fonction des conditions de rayonnement et de l'état de charge de la batterie, l'alimentation en courant de secours est automatiquement désactivée et activée. Un retour inattendu de l'alimentation en courant de secours depuis le mode veille peut en résulter. N'effectuer donc des travaux d'installation sur le réseau domestique que lorsque l'alimentation en courant de secours est désactivée.

Facteurs d'influence de la puissance totale en mode courant de secours :

Puissance réactive

Les consommateurs électriques qui ont un facteur de puissance non égal à 1 ont besoin d'une puissance réactive en plus d'une puissance effective. La puissance réactive impose une charge supplémentaire à l'onduleur. Par conséquent, pour un calcul correct de la puissance totale réelle, ce n'est pas la puissance nominale de la charge mais le courant produit par les puissances effective et réactive qui sont pertinents.

Les appareils à forte puissance réactive sont principalement des moteurs électriques tels que :

- Pompes à eau
- Scies circulaires
- Souffleurs et ventilateurs

Courant de démarrage élevé

Les consommateurs électriques qui doivent accélérer une masse importante nécessitent généralement un courant de démarrage élevé, qui peut être jusqu'à dix fois supérieur au courant nominal. Le courant maximal de l'onduleur est utilisable pour le courant de démarrage. Les consommateurs avec des courants de démarrage excessifs ne peuvent donc pas être démarrés/exploités, même si la puissance nominale de l'onduleur le laisse supposer. Lors du dimensionnement du circuit de courant de secours, tenir compte de la puissance du consommateur raccordé ainsi que de l'éventuel courant de démarrage.

Les appareils à courant de démarrage élevé sont par exemple :

- des appareils avec moteurs électriques (par exemple plate-forme de levage, scie circulaire, banc de rabotage) ;
- des appareils à rapport de transmission et masse oscillante élevés;
- des appareils équipés de compresseurs (par exemple compresseurs d'air, systèmes de climatisation).

IMPORTANT!

Des courants de démarrage très élevés peuvent provoquer une distorsion à court terme ou une chute de la tension de sortie. Il convient d'éviter l'utilisation simultanée d'appareils électroniques dans le même réseau d'alimentation en courant de secours.

Charge déséquilibrée

Lors du dimensionnement des réseaux électriques de secours triphasés, tenir compte de la puissance de sortie totale et des puissances par phase de l'onduleur.

IMPORTANT!

L'onduleur ne peut être utilisé que dans la limite des possibilités techniques. Un fonctionnement dépassant les possibilités techniques peut entraîner la mise hors tension de l'onduleur.

Sécurité des données

L'utilisateur est responsable de la sécurité des données pour :

- la sécurité des données liées à des modifications des réglages d'usine,
- l'enregistrement et la conservation des réglages personnels.

Droits d'auteur

Les droits de reproduction des présentes Instructions de service sont réservés au fabricant.

Les textes et les illustrations correspondent à l'état technique au moment de l'impression, sous réserve de modifications.

Nous vous remercions de nous faire part de vos suggestions d'amélioration et de nous signaler d'éventuelles incohérences dans les Instructions de service.

Mise à la terre (PE)

Raccordement d'un point de l'appareil, du système ou de l'installation à la terre afin de garantir une protection contre les décharges électriques en cas de dysfonctionnement. Lors de l'installation d'un onduleur de classe de sécurité 1 (voir Caractéristiques techniques), la mise à la terre est obligatoire.

Lors du raccordement du conducteur de terre, s'assurer qu'il est protégé contre une déconnexion involontaire. Tous les points évoqués dans le chapitre Raccordement de l'onduleur au réseau électrique public (côté AC) à la page 58 doivent être respectés. Lors de l'utilisation de raccords de câbles, il faut s'assurer que le conducteur de terre est le dernier à être mis en charge en cas de défaillance éventuelle du raccord de câble. Lors du raccordement du conducteur de terre, il convient de respecter les exigences minimales spécifiées par les normes et directives nationales.

Informations générales

Fronius Symo GEN24

Concept d'appareil

L'onduleur transforme le courant continu généré par les modules solaires en courant alternatif. Ce courant alternatif est injecté dans le réseau public de manière synchrone avec la tension du secteur. L'énergie solaire peut également être stockée pour une utilisation ultérieure dans une batterie raccordée.

L'onduleur est conçu pour être utilisé dans des installations photovoltaïques couplées au réseau. L'onduleur est doté d'une fonction alimentation en courant de secours et passe en mode alimentation en courant de secours grâce aux raccordements adaptés*.

L'onduleur surveille automatiquement le réseau électrique public. En cas de conditions de réseau anormales (par ex. coupure de courant, interruption), l'onduleur arrête immédiatement son fonctionnement et interrompt l'injection de courant dans le réseau électrique.

La surveillance du réseau est basée sur la surveillance de la tension, de la fréquence et des conditions d'îlotage.

Après l'installation et la mise en service, l'onduleur fonctionne de manière entièrement automatique et tire le maximum de puissance des modules solaires. Selon le point de fonctionnement, cette puissance est utilisée pour le réseau domestique, stockée dans une batterie** ou injectée dans le réseau.

Dès que l'énergie fournie par les modules solaires n'est plus suffisante, la puissance est injectée dans le réseau domestique à partir de la batterie. Il est également possible de configurer l'onduleur pour qu'il prélève la puissance du réseau électrique public afin de charger la batterie**.

Lorsque la température de l'onduleur est trop élevée, celui-ci s'autoprotège en réduisant automatiquement la puissance de sortie ou de charge actuelle ou se coupe complètement.

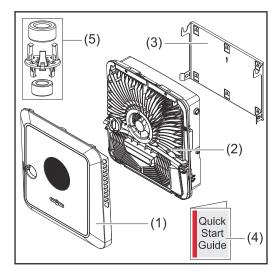
Une température d'onduleur trop importante peut être due à une température ambiante élevée ou à une évacuation de l'air chaud insuffisante (par ex. en cas d'installation dans une armoire de commande sans évacuation adaptée de l'air chaud).

* Selon la variante d'appareil, la batterie appropriée, les câbles correspondants, les réglages ainsi que les normes et directives locales.

Aperçu des fonctions

Fonction	Symo GEN24	Symo GEN24 Plus
Option alimentation en courant de secours - PV Point (OP)	⊘	⊘
Connexion d'une batterie*	disponible en op- tion**	⊘
Option alimentation en courant de secours - Full Backup	×	×

- Pour les batteries appropriées, voir le chapitre Batteries adaptées.
- ** Les fonctions sont disponibles en option via Fronius UP (voir le chapitre Fronius UP).


Fronius UP

Avec Fronius UP*, l'entreprise spécialisée agréée peut ajouter des options à l'onduleur (voir chapitre **Aperçu des fonctions**).

* La disponibilité de Fronius UP est spécifique à chaque pays. Plus d'informations sur Disponibilité.

(3)

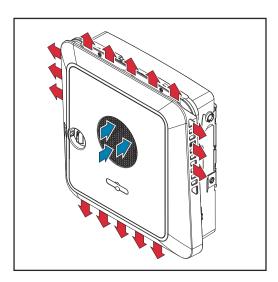
Contenu de la livraison

- (1) Couvercle du boîtier
- (2) Onduleur
 - Support de fixation (schéma)
- (4) Guide de démarrage rapide
- (5) 2 anneaux en ferrite avec support

Utilisation conforme

L'onduleur est destiné à transformer le courant continu des modules solaires en courant alternatif et à injecter ce dernier dans le réseau électrique public. Un mode d'alimentation en courant de secours* est possible avec les raccordements adaptés.

Font également partie de l'utilisation conforme :


- la lecture intégrale et le respect de toutes les indications ainsi que de tous les avertissements de sécurité et de danger des Instructions de service ;
- le montage selon le chapitre **Installation** à partir de la page 43.

Respecter les directives fournies par l'opérateur réseau pour l'injection dans le réseau et les méthodes de connexion.

L'onduleur est un appareil couplé au réseau avec fonction d'alimentation en courant de secours. Il ne s'agit pas d'un onduleur en site isolé. Il est donc nécessaire de respecter les restrictions suivantes en mode alimentation en courant de secours :

- max. 2 000 heures de fonctionnement minimum peuvent être effectuées en mode alimentation en courant de secours ;
- plus de 2 000 heures de fonctionnement peuvent être effectuées en mode alimentation en courant de secours, si la durée du mode d'injection dans le réseau de l'onduleur ne dépasse pas les 20 % à ce moment-là.
- * Selon la variante d'appareil, la batterie appropriée, les câbles correspondants, les réglages ainsi que les normes et directives locales.

Concept thermique

L'air ambiant est aspiré par le ventilateur sur la face avant et soufflé sur les côtés de l'appareil. L'évacuation uniforme de la chaleur permet l'installation de plusieurs onduleurs les uns à côté des autres.

REMARQUE!

Risque dû à un refroidissement insuffisant de l'onduleur.

Cela peut entraîner une perte de puissance de l'onduleur.

- Ne pas obstruer le ventilateur (par ex. avec des objets dépassant de la protection contact).
- ▶ Ne pas couvrir les fentes d'aération, même partiellement.
- S'assurer que l'air ambiant peut circuler librement à travers les fentes d'aération de l'onduleur à tout moment.

Fronius Solar.web

Avec Fronius Solar.web ou Fronius Solar.web Premium, l'installation photovoltaïque peut facilement être surveillée et analysée par le propriétaire et l'installateur. Grâce à une configuration correspondante, l'onduleur transmet des données telles que la puissance, les rendements, la consommation et le bilan énergétique à Fronius Solar.web. Pour plus d'informations, voir Solar.web - Surveillance et analyse.

La configuration s'effectue via l'assistant de mise en service, voir le chapitre **Installation avec l'application** à la page **84** ou **Installation avec le navigateur** à la page **84**.

Conditions requises pour la configuration :

- Connexion Internet (téléchargement : 512 kBit/s min., chargement : 256 kBit/s min.)*.
- Compte d'utilisateur sur solarweb.com.
- Configuration terminée via l'assistant de mise en service.
- * Ces données ne constituent pas la garantie absolue d'un fonctionnement parfait. Des taux d'erreur élevés dans la transmission, des variations de réception ou des interruptions de transmission peuvent avoir une influence négative sur le transfert de données. Fronius recommande de tester la connexion Internet sur site avec des exigences minimales.

Communication locale

L'onduleur peut être trouvé via le protocole DNS Multicast (mDNS). Il est recommandé de rechercher l'onduleur via le nom d'hôte qui lui a été attribué.

Les données suivantes peuvent être consultées via mDNS :

- NominalPower
- Systemname
- DeviceSerialNumber
- SoftwareBundleVersion

Les différents modes de service

Modes de service - Signification des symboles

Module solaire

produit du courant continu.

Onduleur Fronius GEN24

convertit le courant continu en courant alternatif et charge la batterie (la charge de la batterie dépend de la variante d'appareil, de la batterie appropriée, des câbles correspondants et des réglages). La surveillance des installations intégrée permet de relier l'onduleur à un réseau par WLAN.

Onduleur supplémentaire dans le système

convertit le courant continu en courant alternatif. Il n'est cependant pas possible de charger une batterie et cet onduleur n'est pas disponible en mode courant de secours.

Batterie

est couplée à l'onduleur côté courant continu et stocke l'énergie électrique.

Fronius Ohmpilot

pour l'utilisation de l'énergie excédentaire pour le chauffage de l'eau

Compteur primaire

enregistre la courbe de charge du système et fournit les données de mesure pour l'établissement du profil énergétique dans Fronius Solar.web. Le compteur primaire contrôle également la régulation dynamique de l'injection.

Compteur secondaire

enregistre la courbe de charge des consommateurs individuels (par exemple, machine à laver, lampes, TV, pompe à chaleur, etc.) dans le secteur de consommation et fournit les données de mesure pour l'établissement du profil énergétique dans Fronius Solar.web.

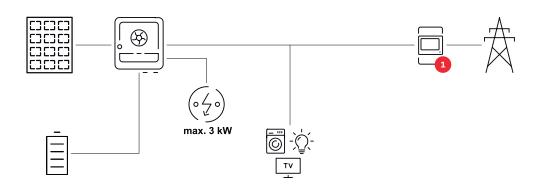
Consommateurs dans le système

les consommateurs connectés au système.

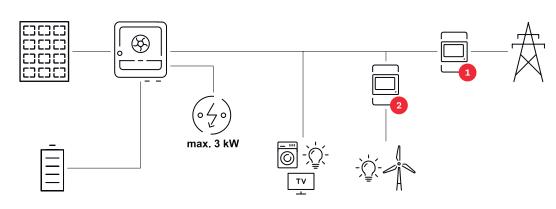
Consommateurs et générateurs supplémentaires dans le système connectés au système via un Smart Meter.

PV Point

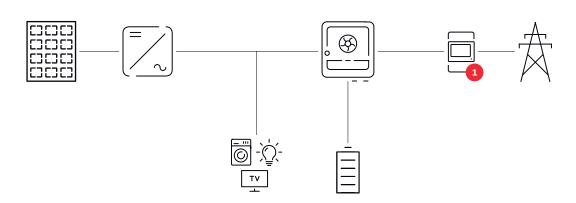
est un circuit de courant de secours monophasé non ininterrompu qui alimente des appareils électriques jusqu'à une puissance maximale de 3 kW si les modules solaires ou la batterie fournissent une puissance suffisante.

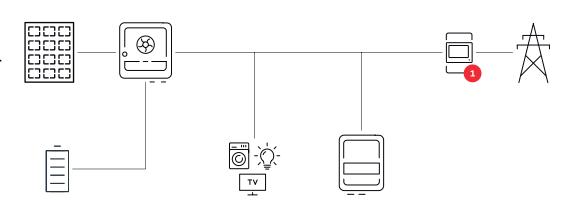


Réseau électrique

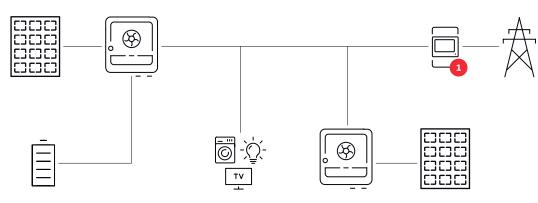

alimente les consommateurs du système si les modules solaires ou la batterie ne fournissent pas suffisamment d'énergie.

Mode de service - Onduleur avec batterie

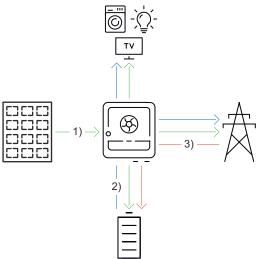

Afin d'optimiser au maximum l'autoconsommation de l'installation photovoltaïque, une batterie peut être utilisée comme système de stockage. La batterie est couplée à l'onduleur côté courant continu. Par conséquent, aucune conversion de courant multiple n'est nécessaire et le rendement est amélioré.


Mode de service - Onduleur avec batterie et plusieurs Smart Meter

Mode de service - Onduleur avec batterie, couplé AC à un autre onduleur



Mode de service - Onduleur avec batterie et Ohmpilot



Mode de service - Onduleur avec batterie et autre onduleur

Dans l'installation photovoltaïque hybride, les batteries ne peuvent être raccordées qu'à un onduleur avec prise en charge d'une batterie. Les batteries ne peuvent pas être réparties sur plusieurs onduleurs avec prise en charge d'une batterie. En fonction du fabricant de batteries, il est toutefois possible de combiner plusieurs batteries sur un onduleur.

Direction du flux d'énergie de l'onduleur

- (1) module solaire onduleur consommateur/réseau/batterie
- (2) batterie onduleur consommateur/réseau*
- (3) réseau onduleur batterie*

* En fonction des réglages ainsi que des normes et directives locales.

États de fonctionnement (uniquement pour les systèmes de batterie) Les systèmes de batterie distinguent différents états de fonctionnement. L'état de fonctionnement actuel est indiqué sur l'interface utilisateur de l'onduleur ou sur Solar.web.

État de fonctionnement	Description
Fonctionnement normal	L'énergie est stockée ou extraite selon les besoins.
État de charge minimal (SOC) atteint	La batterie a atteint l'état de charge spécifié par le fabricant ou l'état de charge minimal réglé. La bat- terie ne peut pas continuer à se décharger.
Mode économie d'énergie (veille)	Le système a été placé en mode économie d'énergie. Le mode économie d'énergie est automatiquement arrêté dès que l'excédent de puissance disponible est à nouveau suffisant.
Démarrage	Le système de stockage démarre à partir du mode économie d'énergie (veille).

État de fonctionnement	Description
Rechargement forcé	L'onduleur recharge la batterie pour maintenir l'état de charge spécifié par le fabricant ou celui réglé (protection contre la décharge profonde).
Désactivé	La batterie n'est pas active. Soit celle-ci a été désactivée/éteinte, soit une erreur empêche toute communication avec la batterie.

Mode économie d'énergie

Généralités

Le mode économie d'énergie (mode veille) sert à réduire la l'autoconsommation de l'installation. L'onduleur et la batterie passent tous deux automatiquement en mode économie d'énergie dans certaines conditions.

L'onduleur passe en mode économie d'énergie lorsque la batterie est vide et qu'aucune puissance photovoltaïque n'est disponible. Seule la communication de l'onduleur avec le Fronius Smart Meter et Fronius Solar.web est maintenue.

Conditions de déconnexion

Lorsque toutes les conditions de déconnexion sont réunies, la batterie passe en mode économie d'énergie en l'espace de 10 minutes. Ce délai garantit que l'onduleur puisse redémarrer au moins une fois.

L'état de charge de la batterie est inférieur ou égal à l'état de charge minimal saisi.

La puissance momentanée de charge ou de décharge de la batterie est inférieure à 100 W.

Moins de 50 W sont disponibles pour charger la batterie. La puissance d'injection dans le réseau public est inférieure d'au moins 50 W à la puissance actuellement nécessaire pour le réseau domestique.

L'onduleur passe automatiquement en mode économie d'énergie après la batterie

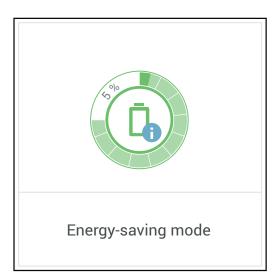
Conditions d'activation

Lorsque l'une des conditions suivantes est remplie pendant au moins 30 secondes, le mode économie d'énergie est arrêté :

- En raison de la modification d'un paramètre sur l'interface utilisateur de l'onduleur, le mode économie d'énergie n'est plus autorisé.
- Si une réduction dynamique de la puissance de 0 est réglée ou si le système fonctionne en mode alimentation en courant de secours, la puissance d'injection dans le réseau public est toujours inférieure à la puissance nécessaire pour le réseau domestique.

Dans ce cas, il existe une condition particulière (réduction dynamique de la puissance < 300 W ou mode alimentation en courant de secours actif) :

- si la puissance photovoltaïque dépasse un seuil donné, le mode économie d'énergie s'arrête.
- Une demande de charge de la batterie à partir du réseau public est effectuée depuis l'interface utilisateur de l'onduleur.
- La batterie est rechargée pour atteindre l'état de charge minimal ou effectuer un calibrage.


Cas particulier

Si l'onduleur ne démarre pas pendant 12 minutes (par exemple en cas d'erreur), ou en cas d'interruption de la connexion électrique entre l'onduleur et la batterie et qu'il n'y a pas de fonctionnement en mode courant de secours, la batterie bascule dans tous les cas en mode économie d'énergie. L'autodécharge de la batterie est ainsi minimisée.

Affichage du mode économie d'énergie

Pendant le mode économie d'énergie :

- la LED de fonctionnement de l'onduleur s'allume en orange (voir **Fonctions** des boutons et LED d'état à la page 35);
- l'interface utilisateur de l'onduleur est accessible ;
- toutes les données disponibles sont enregistrées et envoyées à Solar.web ;
- les données actuelles sont visibles sur Solar.web.

Le mode économie d'énergie est représenté par un « i » à côté du symbole de batterie dans l'aperçu de l'installation sur l'interface utilisateur de l'onduleur et sur Solar.web.

Batteries adaptées

Généralités

Fronius tient à préciser expressément que les batteries externes sont des produits qui ne sont pas fabriqués par Fronius. Fronius n'est pas le fabricant, ni le distributeur ou le revendeur de ces batteries. Fronius décline toute responsabilité et n'offre aucune garantie ni service après-vente pour ces batteries.

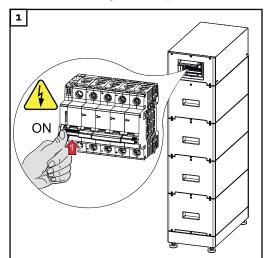
Si la version du logiciel/micrologiciel est obsolète, des incompatibilités peuvent survenir entre l'onduleur et la batterie. Dans ce cas, les étapes suivantes doivent être réalisées :

- Mettre le logiciel de la batterie à jour voir la documentation de la batterie.
- Mettre le micrologiciel de l'onduleur à jour voir Mise à jour, à la page 105.

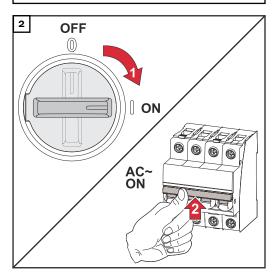
Lire le présent document et les instructions d'installation de la batterie externe avant l'installation et la mise en service. La documentation est soit jointe à la batterie externe, soit disponible auprès du fabricant de batteries et de son partenaire de service.

Tous les documents relatifs à l'onduleur sont disponibles à l'adresse suivante :

https://www.fronius.com/en/solar-energy/installers-partners/service-support/tech-support


BYD Battery-Box Premium

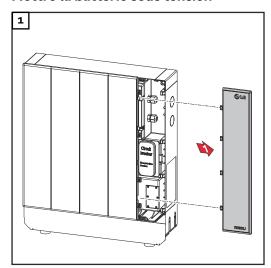
BYD Battery-Box Premium HVS	5.1	7.7	10.2	12.8 ¹
Nombre de modules de batteries	2	3	4	5
Fronius Symo GEN24 ²⁾		⊘	⊘	⊘
Fronius Symo GEN24 Plus		⊘	⊘	⊘
Fonctionnement parallèle sur batterie ³⁾	Ø	⊘	⊘	⊘


BYD Battery-Box Premium HVM	8.3	11.0	13.8	16.6	19.3	22.1
Nombre de modules de batteries	3	4	5	6	7	8
Fronius Symo GEN24 ²⁾	\otimes		✓	⊘		✓
Fronius Symo GEN24 Plus	\otimes		✓	⊘	⊘	✓
Fonctionnement parallèle sur batterie ³⁾	×	⊘	⊘	⊘	⊘	

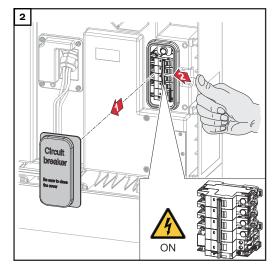
- 1) Non validé et certifié pour l'Italie.
- 2) Fonction logicielle pour la prise en charge d'une batterie disponible en option.
- Il est possible de combiner au maximum 3 batteries de capacité identique. La BYD Battery-Box Premium HVM 22.1 permet de combiner au maximum 2 batteries. Non validé et certifié pour l'Italie.

IMPORTANT! Pour un fonctionnement sûr avec une BYD Battery-Box Premium HVM, il faut toujours respecter l'ordre de mise en marche du système ci-dessous.

Raccorder la batterie.


Placer le sectionneur DC en position « On ». Enclencher le système de protection automatique.

LG FLEX


LG FLEX	8.6	12.9	17.2
Nombre de modules de batteries	2	3	4
Fronius Symo GEN24 *	⊘	⊘	▽
Fronius Symo GEN24 Plus	Ø	⊘	\bigcirc

^{*} Fonction logicielle pour la prise en charge d'une batterie disponible en option.

Mettre la batterie sous tension

Retirer le cache vers la droite.

Retirer le cache du sectionneur DC vers l'avant. Placer le sectionneur DC en position « On ».

Pour le remontage de la batterie, suivre les étapes précédentes dans l'ordre inverse.

Démarrage manuel du système

Configuration

Aucune énergie n'est disponible à partir des modules solaires ou du réseau public. Si le mode alimentation en courant de secours ou batterie est impossible (par ex. protection contre la décharge complète de la batterie), l'onduleur et la batterie s'éteignent.

Notification lors de l'arrêt du système

Les messages d'état concernant l'état inactif de la batterie sont affichés sur l'interface utilisateur de l'onduleur. Une notification par e-mail peut être activée dans Fronius Solar.web.

Démarrage manuel de la batterie après l'arrêt du système

Dès que l'énergie est à nouveau disponible, l'onduleur se met en marche automatiquement, mais la batterie doit être démarrée manuellement. Pour cela, il faut respecter l'ordre de mise en marche (voir le chapitre **Batteries adaptées** à la page **25**).

Démarrer le mode alimentation en courant de secours après l'arrêt du système Pour démarrer le mode alimentation en courant de secours, l'onduleur a besoin de l'énergie de la batterie. Cette opération s'effectue manuellement au niveau de la batterie ; voir les instructions de service du fabricant de la batterie pour de plus amples informations sur l'alimentation en énergie pour le redémarrage de l'onduleur via la batterie.

Protection des personnes et de l'appareil

Protection centrale du réseau et de l'installation

L'onduleur permet d'utiliser les relais AC intégrés comme interrupteurs de couplage en liaison avec une protection centrale du réseau et de l'installation (selon la VDE-AR-N 4105:2018:11 §6.4.1). Pour cela, le dispositif de déclenchement central (interrupteur) doit être intégré dans la chaîne WSD comme décrit au chapitre WSD (Wired Shut Down) à la page 29.

WSD (Wired Shut Down)

La déconnexion par câble WSD interrompt l'injection dans le réseau de l'onduleur lorsque le dispositif de déclenchement (interrupteur, par ex. arrêt d'urgence ou contact de détection d'incendie) a été activé.

En cas de panne d'un onduleur (esclave), celui-ci est ponté et le fonctionnement des autres onduleurs est maintenu. En cas de panne d'un deuxième onduleur (esclave) ou de l'onduleur (maître), le fonctionnement de toute la chaîne WSD est interrompu.

Installation voir Installer le WSD (Wired Shut Down) à la page 82.

Unité de surveillance des courants résiduels

L'onduleur est équipé d'une unité de surveillance des courants résiduels (RCMU = Residual Current Monitoring Unit), conformément aux normes CEI 62109-2 et CEI 63112.

Ce système surveille les courants résiduels du module solaire jusqu'à la sortie AC de l'onduleur et déconnecte l'onduleur du réseau en cas de courant résiduel inadmissible.

Surveillance d'isolation

Dans les installations photovoltaïques avec modules solaires non raccordés à la terre, l'onduleur contrôle la résistance entre le pôle positif ou négatif de l'installation photovoltaïque et le potentiel de terre avant l'activation du mode d'injection dans le réseau. En cas de court-circuit entre le câble DC+ ou DC- et la terre (par ex. en cas de câbles DC mal isolés ou de modules solaires défectueux), une injection sur le réseau public est empêchée.

AFCI - Détection d'arc électrique (Arc Guard)

L'AFCI (Arc Fault Circuit Interrupter) protège contre les arcs électriques parasites. Au sens strict, il s'agit d'un dispositif de protection contre les erreurs de contact. L'AFCI évalue les perturbations survenant côté DC sur la courbe de courant et de tension à l'aide d'un circuit électronique et coupe le circuit électrique si une erreur de contact est détectée. Toute surchauffe aux mauvais points de contact et, dans le meilleur des cas, d'éventuels incendies, sont ainsi évités.

Danger en cas de montage DC défectueux ou incorrect.

Il peut en résulter un risque de dommages et un risque d'incendie consécutif sur l'installation photovoltaïque en raison de charges thermiques inadmissibles causées par un arc électrique.

- Vérifier le bon état des connexions.
- Réparer correctement les isolations défectueuses.
- Effectuer des raccordements conformément aux indications.

IMPORTANT!

Fronius ne prend en charge aucun coût résultant de la détection d'un arc électrique et de ses conséquences. Fronius décline toute responsabilité en cas de dommages survenant malgré la détection/l'interruption d'arc électrique intégrée (par ex. du fait d'un arc électrique parallèle).

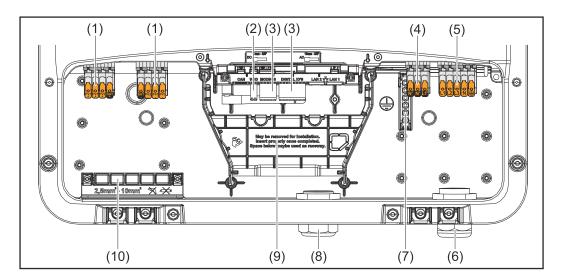
IMPORTANT!

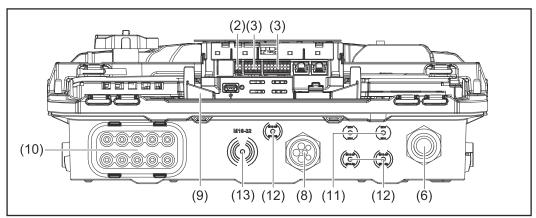
L'électronique active du module solaire (par ex. le dispositif d'optimisation de puissance) peut nuire au fonctionnement de la détection d'arc électrique. Fronius ne garantit pas le bon fonctionnement de la détection d'arc électrique en combinaison avec l'électronique active du module solaire.

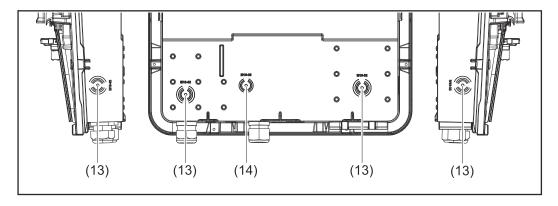
Comportement de reconnexion

Après la détection d'un arc électrique, le fonctionnement du mode d'injection dans le réseau est interrompu pendant au moins 5 minutes. Selon la configuration, le mode d'injection dans le réseau redémarre ensuite automatiquement. Si plusieurs arcs électriques sont détectés dans une période de 24 heures, le mode d'injection dans le réseau peut également être interrompu de manière permanente jusqu'à ce qu'une reconnexion manuelle ait lieu.

État sécurisé

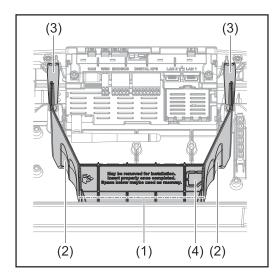

Si l'un des dispositifs de sécurité suivants se déclenche, l'onduleur passe à un état sécurisé :


- WSD
- Surveillance d'isolation
- Unité de surveillance des courants résiduels
- AFCI


En état sécurisé, l'onduleur n'injecte plus et est déconnecté du réseau par l'ouverture des relais AC.

Éléments de commande et connexions

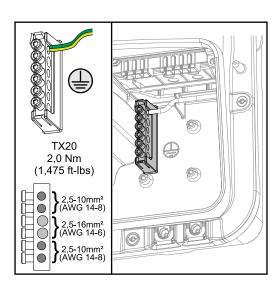
Zone de raccordement



- (1) 2 bornes de raccordement DC Push-in à 4 pôles
- (2) Borne de raccordement Push-in WSD (Wired Shut Down)
- (3) Bornes de raccordement Push-in zone de communication de données (Modbus, entrées et sorties numériques)
- (4) Borne de raccordement Push-in à 3 pôles pour le PV Point (OP)
- (5) Borne de raccordement AC Push-in à 5 pôles
- (6) Passe-câble/raccord de câble AC
- (7) Borne d'électrode de terre à 6 pôles
- (8) Passe-câble/raccord de câble zone de communication de données

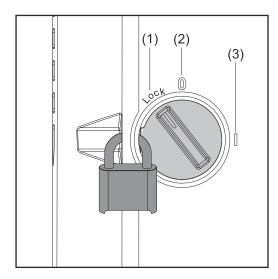
- (9) Séparation zone de raccordement
- (10) 10 passe-câbles DC
- (11) Passe-câble en option (M16)
- (12) Passe-câble en option (M16 M20)
- (13) Passe-câble en option (M16 M32)
- (14) Passe-câble en option (M16 M25)

Séparation de la zone de raccordement


La séparation de la zone de raccordement sépare les conducteurs à haute tension (DC et AC) des lignes de signaux. Pour un meilleur accès à la zone de raccordement, la séparation peut être retirée pour les travaux de raccordement et doit être replacée.

- (1) Passage de câbles intégré
- (2) Évidements pour le retrait de la séparation de la zone de raccordement
- (3) Crochets d'encliquetage pour le verrouillage/déverrouillage
- (4) Point de rupture prédéfini pour le connecteur Datcom

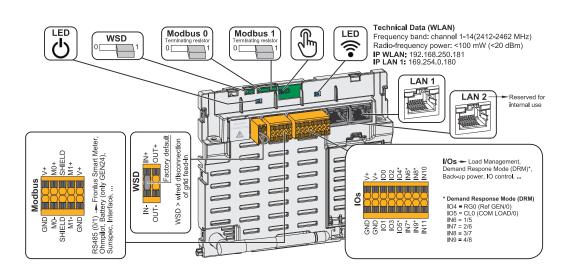
Le passage de câbles intégré (1) permet de poser les câbles d'une zone à l'autre de l'onduleur. Cela permet d'installer facilement plusieurs onduleurs les uns à côté des autres.


Borne d'électrode de terre

La borne d'électrode de terre offre la possibilité de mettre d'autres composants à la terre, tels que :

- Câble AC
- Support du module
- Piquet de terre

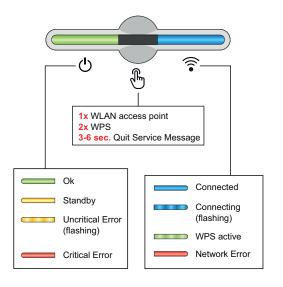
Sectionneur DC


Le sectionneur DC dispose de 3 positions de commutation :

- (1) Verrouillé/arrêt (rotation à gauche)
- (2) Off
- (3) On

IMPORTANT!

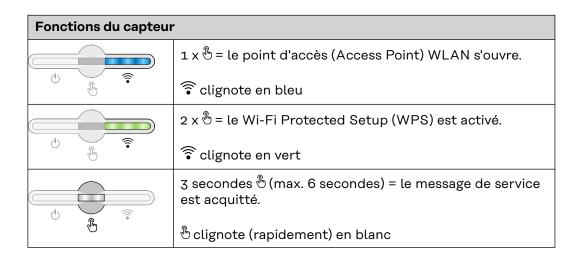
Dans les positions de sélecteur (1) et (3), l'onduleur peut être protégé contre la mise en marche et l'arrêt par un cadenas standard. Les dispositions nationales doivent être prises en compte.


Zone de communication de données

U LED de fonctionnement	Indique l'état de fonctionnement de l'onduleur.
Interrupteur WSD (Wired Shut Down)	Définit l'onduleur comme appareil primaire WSD ou appareil secondaire WSD.
	Position 1: appareil primaire WSD Position 0: appareil secondaire WSD
Interrupteur Modbus 0 (MB0)	Active/Désactive la résistance termi- nale pour le Modbus 0 (MB0).
	Position 1 : résistance terminale activée (réglage usine) Position 0 : résistance terminale désactivée

T	
Interrupteur Modbus 1 (MB1)	Active/Désactive la résistance termi- nale pour le Modbus 1 (MB1).
	Position 1 : résistance terminale activée (réglage usine) Position 0 : résistance terminale désactivée
⊕ Capteur optique	Pour la commande de l'onduleur. Voir le chapitre Fonctions des boutons et LED d'état à la page 35.
F LED de communication	Indique l'état de la connexion de l'onduleur.
LAN 1	Connecteur Ethernet pour la communication de données (par ex. routeur WLAN, réseau domestique ou pour la mise en service à l'aide d'un ordinateur portable, voir chapitre Installation avec le navigateur à la page 84).
LAN 2	Réservé pour des fonctions futures. Utiliser uniquement le LAN 1 pour évi- ter tout dysfonctionnement.
Borne de raccordement E/S	Borne de raccordement Push-in pour les entrées/sorties numériques. Voir le chapitre Câbles autorisés pour le connecteur de communication des données à la page 55. Les désignations (RGO, CLO, 1/5, 2/6, 3/7, 4/8) se réfèrent à la fonction Demand Response Mode, voir le chapitre Demand Response Modes (DRM) à la page 92.
Borne de raccordement WSD	Borne de raccordement Push-in pour l'installation WSD. Voir le chapitre WSD (Wired Shut Down) à la page 29.
Borne de raccordement Modbus	Borne de raccordement Push-in pour l'installation de Modbus 0, Modbus 1, 12 V et GND (Ground).
	La borne de raccordement Modbus est utilisée pour établir la connexion de données avec les composants raccordés. Les entrées M0 et M1 peuvent être librement sélectionnées. Max. 4 participants Modbus par entrée, voir le chapitre Participant Modbus à la page 77.

Fonctions des boutons et LED d'état


L'état de l'onduleur est indiqué par la LED de fonctionnement. En cas de panne, les différentes étapes doivent être effectuées sur l'application Fronius Solar.start.

Le capteur optique est actionné par effleurement du doigt.

La LED de communication indique l'état de la connexion. Pour établir la connexion, effectuer les différentes étapes sur l'application Fronius Solar.start.

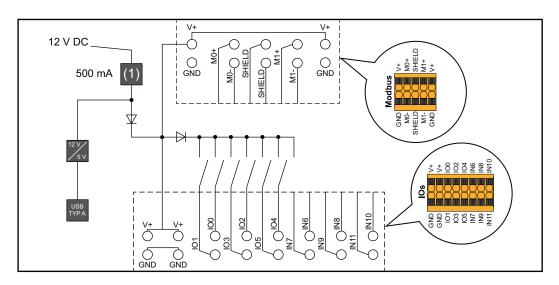
LED d'état	
	L'onduleur fonctionne correctement.
Ф 🖑	ပ် s'allume en vert
(b) (§	L'onduleur effectue les tests de réseau requis par la norme pour le mode d'injection dans le réseau.
	ပ် clignote en vert
Q (**)	L'onduleur est en veille, ne fonctionne pas (par exemple, pas d'injection dans le réseau la nuit) ou n'est pas configuré.
\ ¹ 777	ပ် s'allume en jaune
	L'onduleur indique un état non critique.
Ф <u></u>	ပ် clignote en jaune

LED d'état	
0	L'onduleur indique un état critique et aucune injection dans le réseau n'a lieu.
	ပ် s'allume en rouge
φ <u> </u>	L'onduleur indique une surcharge d'alimentation en courant de secours.
	ပ် clignote en rouge
the second secon	La connexion au réseau est établie via WPS. 2 x 🖱 = mode de recherche WPS.
J.	🛜 clignote en vert
	La connexion au réseau est établie via WLAN AP. 1 x 🖱 = mode de recherche WLAN AP (actif pendant 30 minutes).
	🛜 clignote en bleu
	La connexion au réseau n'est pas configurée.
	🛜 s'allume en jaune
the second secon	Une erreur de réseau est affichée, l'onduleur fonctionne correctement.
	🛜 s'allume en rouge
	La connexion réseau est active.
	🛜 s'allume en bleu
	L'onduleur effectue une mise à jour.
(h)	Ů / 🛜 clignotent en bleu
	Il y a un message de service.
(h) (s)	ి s'allume en blanc

Schéma de connexion interne des entrées/sorties

Sur la broche V+ / GND, il est possible d'injecter une tension comprise entre 12,5 et 24 V (+ max. 20 %) avec un bloc d'alimentation externe. Les sorties ES 0 - 5 peuvent alors être exploitées avec la tension externe injectée. Un maximum de 1 A peut être prélevé sur chaque sortie, une intensité totale de 3 A max. étant autorisée. La protection par fusible doit être externe.

ATTENTION!


Risque lié à l'inversion de polarité aux bornes de raccordement en raison d'une mauvaise connexion des blocs d'alimentation externes.

Cela peut entraîner des dommages matériels graves sur l'onduleur.

- Vérifier la polarité du bloc d'alimentation externe avec un instrument de mesure approprié avant de le brancher.
- ► Connecter les câbles aux sorties V+/GND en respectant la polarité.

IMPORTANT!

Si la puissance totale (6 W) est dépassée, l'onduleur coupe complètement l'alimentation en tension externe.

(1) Limite de courant

Option courant de secours – point PV (OP)

Généralités

Explication - PV Point/PV Point Comfort

IMPORTANT!

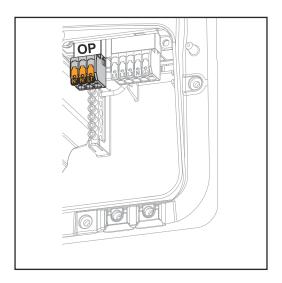
Si plusieurs options d'alimentation en courant de secours sont disponibles, veuillez noter qu'une seule option d'alimentation en courant de secours peut être installée et configurée.

En principe, l'onduleur peut fournir 220 - 240 V au PV Point/PV Point Comfort. Une configuration adéquate doit être effectuée lors de la mise en service.

Avec une tension de sortie de 220 - 240 V, un courant alternatif continu de 13 A maximum est disponible.

Exemple:

220 V *13 A = 2 860 W 230 V *13 A = max. 3 kW

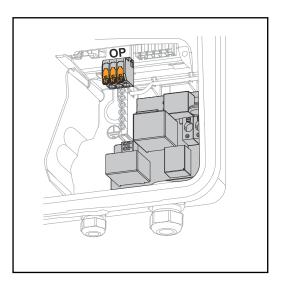

En mode alimentation en courant de secours, certains appareils électroniques ne peuvent pas fonctionner correctement en raison de courants de démarrage trop élevés (par ex. réfrigérateurs ou congélateurs). Il est recommandé d'éteindre les consommateurs non essentiels en mode alimentation en courant de secours. Une surcharge de 35 % est possible pendant 5 secondes, en fonction de la capacité instantanée des modules solaires et/ou de la batterie.

La transition du mode couplé au réseau en mode alimentation en courant de secours entraîne une courte interruption. Pour cette raison, la fonction alimentation en courant de secours ne peut pas être utilisée comme alimentation ininterrompue, par ex. pour les ordinateurs.

Si la batterie ou les modules solaires ne fournissent pas d'énergie en mode alimentation en courant de secours, l'alimentation en courant de secours est automatiquement interrompue. Si l'énergie des modules solaires disponible est à nouveau suffisante, le mode alimentation en courant de secours redémarre automatiquement.

Si la consommation est trop élevée, le mode alimentation en courant de secours est interrompu et le message d'état « Surcharge de l'alimentation en courant de secours » s'affiche sur la LED d'état de l'onduleur (voir le chapitre Fonctions des boutons et LED d'état à la page 35). La puissance max. en mode alimentation en courant de secours selon les données techniques doit être respectée.

PV Point (OP)


En cas de panne du réseau public, le PV Point peut être utilisé pour alimenter des appareils électriques monophasés jusqu'à une puissance max. de 3 kW à la borne de raccordement Opportunity Power (OP), à condition que les modules solaires ou une batterie optionnelle fournissent une puissance suffisante. Aucune tension n'est présente sur la borne de raccordement OP en mode couplé au réseau, avec lequel les charges connectées ne sont donc pas alimentées en continu.

IMPORTANT!

Une connexion au réseau avec un relais n'est pas possible.

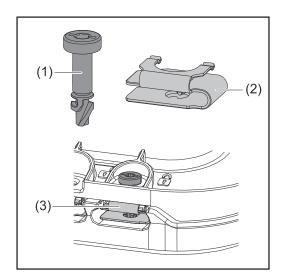
Pour des Instructions d'installation, voir le chapitre Courant de secours - Connecter le point PV (OP) à la page 72.

PV Point Comfort

Avec le PV Point Comfort, des appareils électriques monophasés sont alimentés en continu jusqu'à une puissance de 3 kW.

La commutation entre le mode couplé au réseau et le mode courant de secours se fait automatiquement. En cas de panne du réseau public ou de l'onduleur, les charges au PV Point Comfort sont alimentées en continu. Lorsque le réseau public est à nouveau disponible et que la stabilité est garantie, le PV Point Comfort passe automatiquement en mode de fonctionnement couplé au réseau, le mode d'alimentation en courant de secours est arrêté.

IMPORTANT!


Pour le fonctionnement en mode d'alimentation de secours, une puissance suffisante des modules solaires ou d'une batterie est nécessaire. Le PV Point Comfort n'est pas disponible en Australie et en Nouvelle-Zélande.

Pour plus d'informations et pour des Instructions d'installation, voir le chapitre **PV Point Comfort** à la page **150**.

Installation

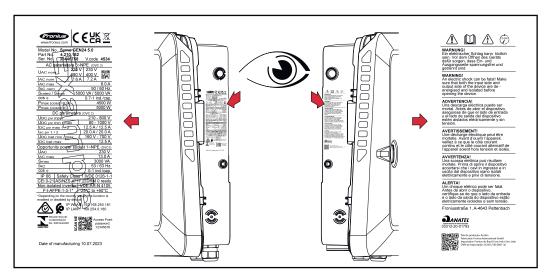
Généralités

Système de raccord rapide

Un système de raccord rapide (3) est utilisé pour le montage du cache de la zone de raccordement et du cache frontal. Le système s'ouvre et se ferme par un demi-tour (180°) de la vis imperdable (1) dans le ressort à déclenchement rapide (2).

Le système est indépendant du couple.

REMARQUE!


Risque en cas d'utilisation d'une perceuse-visseuse.

Cela peut entraîner la destruction du système de raccord rapide en raison d'un couple de serrage excessif.

- ▶ Utiliser un tournevis (TX20).
- ▶ Ne pas tourner les vis à plus de 180°.

Informations sur l'appareil

Des caractéristiques techniques, avertissements et symboles de sécurité figurent sur l'onduleur. Ces avertissements et symboles de sécurité ne doivent être ni retirés, ni recouverts. Ils permettent de prévenir les erreurs de manipulation pouvant être à l'origine de graves dommages corporels et matériels.

Symboles sur la plaque signalétique :

Marquage CE – confirme la conformité aux directives et règlements européens applicables.

Marquage UKCA — confirme la conformité aux directives et règlements britanniques applicables.

Marquage DEEE — les déchets d'équipements électriques et électroniques doivent être collectés séparément et recyclés dans le respect de l'environnement, conformément à la directive européenne et à la législation nationale.

Marquage RCM – conforme aux exigences australiennes et néozélandaises.

Marquage ICASA – conforme aux exigences de l'ICASA (Independent Communications Authority of South Africa).

Marquage CMIM – conforme aux exigences d'IMANOR (Institut Marocain de Normalisation) concernant les règles d'importation et la conformité aux normes marocaines.

Symboles de sécurité:

Risque de dommages corporels et matériels graves suite à une erreur de manipulation.

N'utiliser les fonctions décrites qu'après avoir lu et compris l'intégralité des documents suivants :

- les présentes Instructions de service ;
- toutes les instructions de service des composants périphériques de l'installation photovoltaïque, en particulier les consignes de sécurité.

Tension électrique dangereuse.

Attendre l'expiration de la durée de décharge (2 minutes) des condensateurs de l'onduleur !

Texte de l'avertissement :

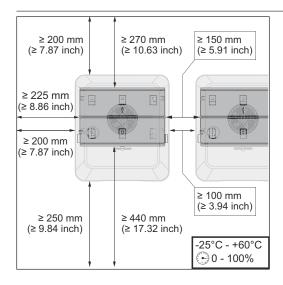
AVERTISSEMENT!

Une décharge électrique peut être mortelle. Avant d'ouvrir l'appareil, veiller à ce que le côté entrée et le côté sortie soient hors tension et séparés.

Compatibilité des composants périphériques

Tous les composants installés dans l'installation photovoltaïque doivent être compatibles et présenter les possibilités de configuration nécessaires. Les composants installés ne doivent pas limiter ni influencer négativement le fonctionnement de l'installation photovoltaïque.

REMARQUE!


Risque lié à la non-compatibilité et/ou à la compatibilité limitée des composants de l'installation photovoltaïque.

Des composants non compatibles peuvent limiter et/ou influencer négativement l'exploitation et/ou le fonctionnement de l'installation photovoltaïque.

- N'installer dans l'installation photovoltaïque que des composants recommandés par le fabricant.
- Avant l'installation, vérifier avec le fabricant la compatibilité des composants non expressément recommandés.

Choix du site et position de montage

Choix de l'emplacement de l'onduleur Respecter les critères suivants lors du choix de l'emplacement de l'onduleur :

Installation uniquement sur un support solide et non inflammable.

Températures ambiantes max. : -25 °C à +60 °C

Humidité relative de l'air : 0 - 100 %

Dans le cas d'une installation d'onduleur dans une armoire de commande ou dans un local fermé similaire, assurer une évacuation suffisante de l'air chaud avec une ventilation forcée.

Pour des informations détaillées sur les dimensions de l'onduleur, voir le chapitre Fronius Symo GEN243-5 kW à la page 197.

En cas de montage de l'onduleur sur le mur extérieur d'une étable, laisser une distance minimale de 2 m dans toutes les directions entre l'onduleur et les ouvertures et ventilations du bâtiment.

Les supports suivants sont autorisés pour le montage :

- Montage mural (murs en tôle ondulée [rails de montage], murs en briques, murs en béton ou autres surfaces suffisamment porteuses et incombustibles)
- Mât ou support (montage au moyen de rails de montage, derrière les modules solaires directement sur le support PV)
- Toits plats (s'il s'agit d'un toit en feutre, s'assurer que les feutres sont conformes aux exigences de protection anti-incendie et ne sont donc pas facilement inflammables. Les réglementations nationales doivent être respectées.)
- Abris de parking (pas de montage au-dessus de la tête)

L'onduleur convient pour un montage en intérieur.

L'onduleur convient pour un montage en extérieur.

En raison de son indice de protection IP 66, l'onduleur est insensible aux projections d'eau provenant de toutes les directions et peut également être utilisé dans des environnements humides.

Afin de maintenir au plus bas l'échauffement de l'onduleur, ne pas l'exposer au rayonnement solaire direct.

Monter l'onduleur à un emplacement protégé, par ex. sous les modules solaires ou sous une avancée de toit.

L'onduleur ne doit pas être monté et mis en service sur un site dont l'altitude est supérieure à 4 000 m.

Ne pas monter l'onduleur :

 dans des zones exposées à l'ammoniaque, à des vapeurs corrosives, à des acides ou à des sels (par ex. lieux de stockage d'engrais, orifices d'aération d'étables, installations chimiques, tanneries).

En raison de légères nuisances sonores dans certaines conditions de fonctionnement, il est déconseillé d'installer l'onduleur à proximité immédiate des zones de vie domestique.

Ne pas monter l'onduleur :

- dans des locaux présentant un risque élevé d'accident provoqué par des animaux d'élevage (par ex. chevaux, bovins, moutons, porcs);
- dans des étables et locaux secondaires adjacents ;
- dans des locaux de stockage et d'entreposage de foin, paille, fourrage haché, fourrage concentré, engrais.

En principe, l'onduleur est étanche à la poussière (IP 66). Cependant, dans les zones avec de grandes accumulations de poussières, des poussières peuvent se déposer sur les surfaces de refroidissement et ainsi entraver la performance thermique. Dans ce cas, un nettoyage régulier est nécessaire, voir le chapitre Fonctionnement dans des environnements soumis à un fort dégagement de poussières à la page 163. Il n'est donc pas recommandé d'effectuer un montage dans des pièces ou des environnements avec un dégagement de poussière important.

Ne pas monter l'onduleur :

- dans des serres ;
- dans des locaux de stockage et de transformation de fruits, légumes et produits viticoles;
- dans des locaux de préparation de grains, de fourrage vert et d'aliments pour animaux.

Choix de l'emplacement des batteries externes

IMPORTANT!

Pour connaître l'emplacement approprié des batteries externes, consulter les documents du fabricant.

Position de montage de l'onduleur

L'onduleur peut être monté à la verticale sur un mur vertical ou une colonne verticale.

L'onduleur peut être monté à l'horizontale.

L'onduleur peut être monté sur une surface inclinée.

L'onduleur ne doit pas être monté sur une surface inclinée avec

les connecteurs vers le haut.

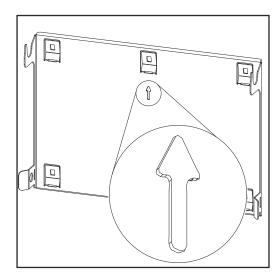
L'onduleur ne doit pas être monté en biais sur un mur vertical ou une colonne verticale.

L'onduleur ne doit pas être monté à l'horizontale sur un mur vertical ou une colonne verticale.

L'onduleur ne doit pas être monté avec les connecteurs vers le haut sur un mur vertical ou une colonne verticale.

L'onduleur ne doit pas être monté en porte-à-faux avec les connecteurs vers le haut.

L'onduleur ne doit pas être monté en porte-à-faux avec les connecteurs vers le bas.



L'onduleur ne doit pas être monté au plafond.

Monter le support de fixation et accrocher l'onduleur

Choix du matériau de fixation Selon le support, utiliser des accessoires de fixation appropriés et respecter les dimensions de vis recommandées pour le support de fixation. L'installateur est responsable du choix correct du matériel de fixation.

Caractéristiques du support de fixation

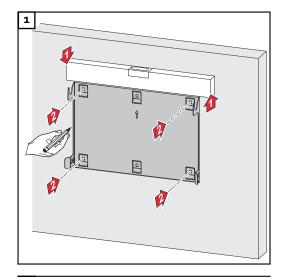
Le support de fixation (schéma) sert également de gabarit de mesure.

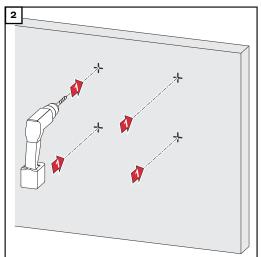
Les pré-perçages du support de fixation sont destinés à des vis d'un diamètre de 6 à 8 mm (0.24 à 0.32 inch).

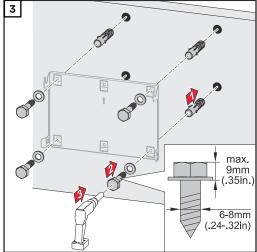
Les irrégularités de la surface de montage (par ex. le plâtre à gros grains) sont largement compensées par le support de fixation.

Ne pas déformer le support de fixation

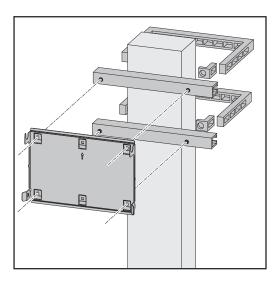
REMARQUE!


Lors du montage du support de fixation sur le mur ou sur une colonne, veiller à ce que le support de fixation ne soit pas déformé.

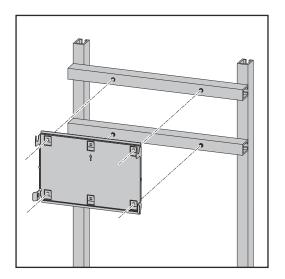

Un support de fixation déformé peut nuire à l'accrochage et au pivotement de l'onduleur.


Monter le support de fixation sur un mur

IMPORTANT!


Lors du montage du support de fixation, s'assurer qu'il est monté avec la flèche dirigée vers le haut.

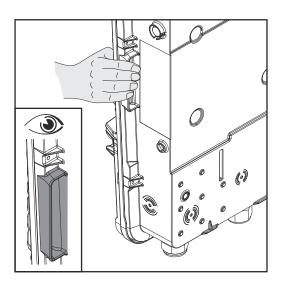
Monter le support de fixation sur un mât ou un support

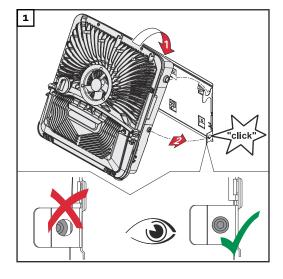


Pour le montage de l'onduleur sur un mât ou un support, Fronius recommande le kit de fixation « Pole clamp » (réf. SZ 2584.000) de la société Rittal GmbH.

Le kit « Pole clamp » couvre les dimensions suivantes :

- mât ou support carré d'une longueur latérale de 50 à 150 mm (1.97 à 5.91 inch);
- mât rond ou support d'un diamètre de 40 à 190 mm (1.57 à 7.48 inch).


Monter le support de fixation sur des rails de montage


IMPORTANT!

Le support de fixation doit être monté en 4 points minimum.

Suspendre l'onduleur au support de fixation

Des poignées sont intégrées sur les côtés de l'onduleur pour faciliter le levage et l'accrochage.

Accrocher par le haut l'onduleur au support de fixation. Les connecteurs doivent être orientés vers le bas.

Enfoncer la partie inférieure de l'onduleur dans les crochets d'encliquetage du support de fixation jusqu'à ce que l'onduleur s'enclenche des deux côtés avec un déclic audible.

Vérifier que l'onduleur est correctement installé des deux côtés.

Conditions de raccordement de l'onduleur

Types de câbles différents

Fil unique	Fils multiples	Fil fin	Fil fin muni de cosses ter- minales avec collerette	Fil fin muni de cosses ter- minales sans collerette
			Cim	

Câbles autorisés pour la connexion élec-

Sur les bornes de raccordement de l'onduleur, les conducteurs en cuivre ronds peuvent être connectés comme décrit ci-dessous.

Connecteurs AC avec borne de raccordement Push-in* En fonction de la puissance réelle de l'appareil, sélectionner des sections de câble suffisamment élevées !						
Nombre de pôles				Com		
5	1,5 à 10 mm²	1,5 à 10 mm²	1,5 à 10 mm²	1,5 à 6 mm²	1,5 à 6 mm²	

	Connecteurs AC pour alimentation en courant de secours avec borne de raccordement Push-in* En fonction de la puissance réelle de l'appareil, sélectionner des sections de câble suffisamment élevées!						
Nombre de pôles				Cim			
3	1,5 à 10 mm²	1,5 à 10 mm ²	1,5 à 10 mm ²	1,5 à 6 mm²	1,5 à 6 mm ²		

Connecteurs BAT/PV avec borne de raccordement Push-in** En fonction de la puissance réelle de l'appareil, sélectionner des sections de câble suffisamment élevées !							
Nombre de pôles				Cim			
2 x 4	4 à 10 mm²	4 à 10 mm²	4 à 10 mm²	4 à 6 mm²	4 à 6 mm²		

Borne d'électrode de terre En fonction de la puissance réelle de l'appareil, sélectionner des sections de câble suffisamment élevées !								
Nombre de pôles								
2	1,5 à 16 mm²	1,5 à 16 mm²	1,5 à 16 mm²	1,5 à 16 mm²	1,5 à 16 mm²			
4	1,5 à 10 mm²	1,5 à 10 mm ²	1,5 à 10 mm²	1,5 à 10 mm ²	1,5 à 10 mm²			

- * Selon la norme produit CEI 62109, le conducteur de terre doit correspondre à la section de phase pour les sections de phase ≤16 mm² et à au moins 16 mm² pour les sections de phase >16 mm².
 - Pour une section des fils de 1,5 mm², la longueur maximale de câble autorisée est de 100 m.
- ** La section de câble doit être dimensionnée en fonction de l'installation et des spécifications du fabricant de batterie.

Câbles autorisés pour le connecteur de communication des données Sur les bornes de raccordement de l'onduleur, les câbles peuvent être connectés comme suit :

Cuivre : fil unique rondCuivre : fil fin rond

IMPORTANT!

Raccorder les conducteurs individuels avec une cosse terminale appropriée si plusieurs conducteurs individuels sont raccordés à une entrée des bornes de raccordement Push-In.

Connect	Connecteurs WSD avec borne de raccordement Push-In								
Dis- tance max.	Lon- gueur de dénu- dage			((() () () () () () () () ()	(1111)	Recomman- dation de câble			
100 m 109 yd	10 mm 0,39 inch	0,14 à 1,5 mm ² AWG 26 - 16	0,14 à 1,5 mm ² AWG 26 - 16	0,14 à 1 mm ² AWG 26 - 18	0,14 à 1,5 mm ² AWG 26 - 16	min. CAT 5 UTP (Un- shielded Twisted Pair)			

Connect	Connecteurs Modbus avec borne de raccordement Push-In								
Dis- tance max.	Lon- gueur de dénu- dage			Cim	(1111)	Recomman- dation de câble			
300 m 328 yd	10 mm 0,39 inch	0,14 à 1,5 mm ² AWG 26 - 16	0,14 à 1,5 mm ² AWG 26 - 16	0,14 à 1 mm ² AWG 26 - 18	0,14 à 1,5 mm ² AWG 26 - 16	min. CAT 5 STP (Shiel- ded Twisted Pair)			

Connect	Connecteurs E/S avec borne de raccordement Push-In							
Dis- tance max.	Lon- gueur de dénu- dage			Com	(1111)	Recomman- dation de câble		
30 m 32 yd	10 mm 0,39 inch	0,14 à 1,5 mm ² AWG 26 - 16	0,14 à 1,5 mm ² AWG 26 - 16	0,14 à 1 mm ² AWG 26 - 18	0,14 à 1,5 mm ² AWG 26 - 16	Conducteur unique pos- sible		

Connecteurs LAN

Fronius recommande au moins un câble CAT 5 STP (Shielded Twisted Pair) et une distance maximale de 100 m (109 yd).

Diamètre du câble AC

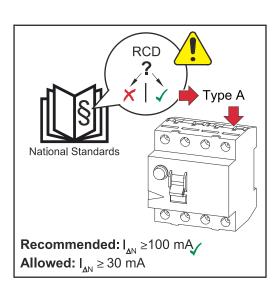
Pour raccord de câble standard M32 **avec raccord de réduction :** 7 - 15 mm

Pour raccord de câble série M32 sans raccord de réduction :

11 à 21 mm

(pour un diamètre de câble inférieur à 11 mm, la force anti-traction se réduit et passe de 100 N à 80 N max.)

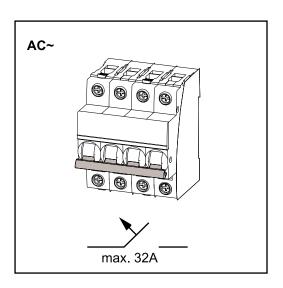
Pour un diamètre de câble supérieur à 21 mm, le raccord de câble M32 doit être remplacé par un raccord de câble M32 avec plage de serrage étendue - référence : 42,0407,0780 - anti-traction M32x1,5 KB 18-25.


Diamètre du câble DC

Diamètre du câble pour l'anti-traction : 9 mm max. Diamètre du câble pour le raccordement à la borne de raccordement Push-in : 6 mm max.

IMPORTANT!

Pour les câbles à double isolation d'un diamètre supérieur à 6 mm, la couche d'isolation extérieure doit être enlevée pour le raccordement à la borne de raccordement Push-in.


Protection maximale par fusible côté courant alternatif

REMARQUE!

Les directives nationales, l'opérateur réseau ou d'autres circonstances peuvent exiger l'installation d'un disjoncteur différentiel sur le câble de raccordement AC.

En règle générale, un disjoncteur différentiel de type A est suffisant. Quelquefois, et en fonction de conditions locales, il est possible que le disjoncteur de courant de fuite de type A se déclenche par erreur. C'est pourquoi Fronius recommande d'utiliser un disjoncteur différentiel adapté au convertisseur de fréquence avec un courant de déclenchement d'au moins 100 mA, conformément aux réglementations nationales.

IMPORTANT!

L'onduleur ne peut être utilisé qu'avec un système de protection automatique 32 A.

Onduleur	Phase s	Puis- sance AC	Protection maximale par fusible	Protection par fusible recom- mandée
Fronius Symo GEN24 3 kW	3	3 000 M	32 A	10 A
Fronius Symo GEN24 4 kW	3	4 000 W	32 A	13 A
Fronius Symo GEN24 5 kW	3	5 000 W	32 A	16 A

Raccordement de l'onduleur au réseau électrique public (côté AC)

Sécurité

AVERTISSEMENT!

Risque en cas d'erreur de manipulation et d'erreur en cours d'opération.

Cela peut entraîner des dommages corporels et matériels graves.

- Avant l'installation et la mise en service, lire les instructions d'installation et les instructions de service.
- La mise en service de l'onduleur doit être effectuée uniquement par du personnel formé à cet effet et dans le cadre des dispositions techniques.

AVERTISSEMENT!

Risque dû à la tension du secteur et à la tension DC des modules solaires exposés à la lumière.

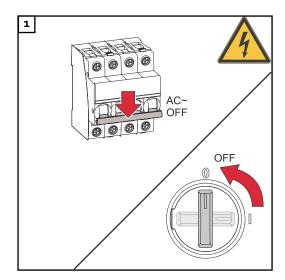
Une décharge électrique peut être mortelle.

- Avant toute opération de raccordement, veiller à ce que les côtés AC et DC en amont de l'onduleur soient hors tension.
- Le raccordement fixe au réseau électrique public ne peut être réalisé que par un installateur électricien agréé.

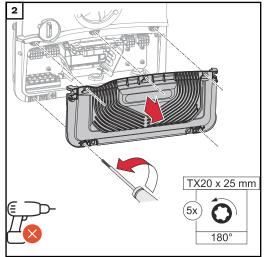
AVERTISSEMENT!

Danger en raison de bornes de raccordement endommagées et/ou encrassées. Cela peut entraîner des dommages corporels et matériels graves.

- Avant les activités de raccordement, vérifier que les bornes de raccordement ne sont pas endommagées ni encrassées.
- ▶ Éliminer les impuretés à l'état hors tension.
- Les bornes de raccordement défectueuses doivent être remises en état par une entreprise spécialisée agréée.

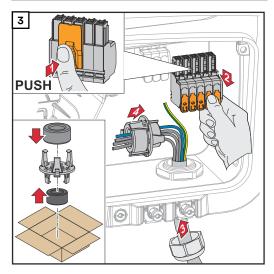

Raccorder l'onduleur au réseau électrique public (côté AC)

REMARQUE!


Le raccordement du conducteur neutre est nécessaire pour le fonctionnement de l'onduleur.

Dans les réseaux non raccordés à la terre, par ex. les réseaux informatiques (réseaux isolés sans conducteur de terre), l'onduleur ne peut pas être exploité.

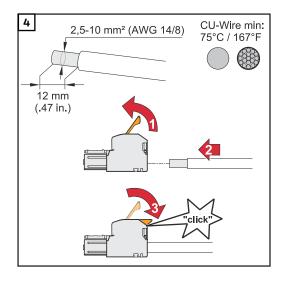
S'assurer que le conducteur neutre du réseau est bien mis à la terre.



Déconnecter le système de protection automatique. Placer le sectionneur DC en position « Off ».

Desserrer les 5 vis du cache de la zone de raccordement à l'aide d'un tournevis (TX20) et faire un tour de 180° vers la gauche.

Retirer le cache de la zone de raccordement de l'appareil.

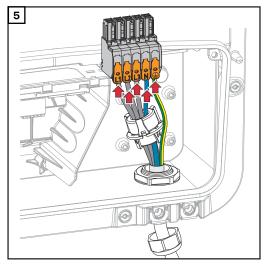

Appuyer sur le dispositif de verrouillage à l'arrière du bloc de raccordement et retirer la borne de raccordement AC.

Introduire le câble secteur par le bas à travers le raccord de câble situé sur le côté droit et à travers l'âme en ferrite.

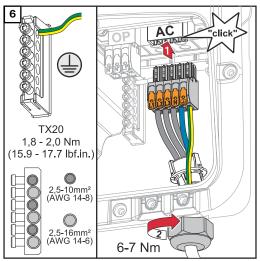
IMPORTANT!

Le conducteur de terre ne doit pas être inséré dans l'âme en ferrite, doit être dimensionné plus long et posé en formant une boucle afin qu'il soit chargé en dernier en cas de défaillance éventuelle du raccord de câble.

Pour plus d'informations sur le raccord de câble, voir le chapitre Diamètre du câble AC à la page 56.



Dénuder les conducteurs uniques sur 12 mm.


Sélectionner la section de câble selon le chapitre **Câbles autorisés pour la connexion électrique** à la page **54**. Ouvrir le levier d'actionnement de la borne de raccordement en le soulevant et insérer jusqu'à la butée le conducteur unique dénudé à l'emplacement prévu à cet effet sur la borne de raccordement. Fermer ensuite le levier d'actionnement jusqu'à enclenchement.

IMPORTANT!

Un seul câble peut être connecté par pôle. Les câbles AC peuvent être connectés aux bornes de raccordement AC sans cosses terminales.

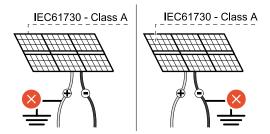
L1 Conducteur de phase
 L2 Conducteur de phase
 L3 Conducteur de phase
 N Conducteur neutre
 PE Conducteur de terre

Insérer la borne de raccordement AC dans l'emplacement AC jusqu'à enclenchement. Fixer l'écrou borgne du raccord de câble avec un couple de 6 - 7 Nm.

Raccordement des chaînes de modules solaires à l'onduleur

Généralités sur les modules solaires Pour bien choisir les modules solaires et obtenir le meilleur rendement possible au niveau de l'onduleur, respecter les points suivants :

- En cas de rayonnement solaire constant et de baisse de la température, la tension à vide des modules solaires augmente. La tension à vide ne doit pas dépasser la tension de système max. admissible. Une tension à vide supérieure aux valeurs prescrites entraîne la destruction de l'onduleur et l'annulation de tous les droits à la garantie.
- Respecter les coefficients de température de la fiche technique des modules solaires.
- Des programmes de calcul permettent de déterminer les valeurs exactes des dimensions des modules solaires, tels que : **Fronius Solar.creator**.


IMPORTANT!

Avant de raccorder les modules solaires, vérifier que la tension réelle correspond à celle calculée à partir des caractéristiques techniques du fabricant.

IMPORTANT!

Les modules solaires branchés à l'onduleur doivent répondre à la norme CEI 61730 Classe A.

IMPORTANT!

Les chaînes de modules solaires ne doivent pas être mises à la terre.

max. 1000 $V_{\rm DC}$

Sécurité

Λ

AVERTISSEMENT!

Danger en cas d'erreur de manipulation et d'erreur en cours d'opération.

Cela peut entraîner des dommages corporels et matériels graves.

- ▶ La mise en service ainsi que les activités de maintenance et d'entretien sur l'étage de puissance de l'onduleur ne peuvent être effectuées que par du personnel de service formé par Fronius et dans le cadre des dispositions techniques.
- Avant l'installation et la mise en service, lire les instructions d'installation et les instructions de service.

↑ AVERTISSEMENT!

Risque dû à la tension du secteur et à la tension DC des modules solaires exposés à la lumière.

Cela peut entraîner des dommages corporels et matériels graves.

- L'ensemble des opérations de raccordement, de maintenance et de service doivent être exécutées uniquement lorsque les côtés AC et DC de l'onduleur sont hors tension.
- Le raccordement fixe au réseau électrique public ne peut être réalisé que par un installateur électricien agréé.

↑ AVERTISSEMENT!

Risque de décharge électrique en raison du raccordement inapproprié de bornes de raccordement/connecteurs PV.

Une décharge électrique peut être mortelle.

► Lors de la connexion, s'assurer que chaque pôle d'une chaîne est acheminé par la même entrée PV, par exemple :

Pôle + chaîne 1 à l'entrée PV 1.1+ et Pôle - chaîne 1 à l'entrée PV 1.1-

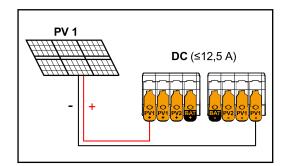
AVERTISSEMENT!

Danger en cas de bornes de raccordement endommagées et/ou encrassées.

Cela peut entraîner des dommages corporels et matériels graves.

- Avant les activités de raccordement, vérifier que les bornes de raccordement ne sont pas endommagées ni encrassées.
- ▶ Éliminer les impuretés à l'état hors tension.
- Les bornes de raccordement défectueuses doivent être remises en état par une entreprise spécialisée agréée.

Généralités générateur photovoltaïque

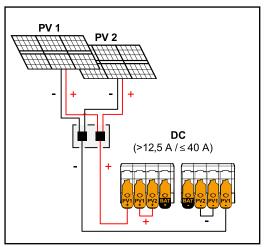

2 entrées PV indépendantes l'une de l'autre (PV 1 et PV 2) sont disponibles. Celles-ci peuvent être raccordées à un nombre variable de modules.

Lors de la première mise en service, régler le générateur photovoltaïque selon la configuration adaptée (également possible ultérieurement dans le menu **Configuration de l'installation > Composants**).

Configuration du générateur photovoltaïque 3 - 5 kW

IMPORTANT!

L'installation doit être effectuée conformément aux normes et directives nationales en vigueur. Lorsque la détection d'arc intégrée à l'onduleur est utilisée pour répondre aux exigences de la norme CEI 63027 pour la détection d'arc, les chaînes de modules solaires ne doivent pas être combinées avant l'onduleur.



Courant inférieur ou égal à 12,5 A (I_{dcmax}).

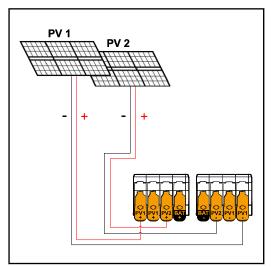
Réglages du générateur photovoltaïque :

PV 1: **ON**

PV 2 : **OFF**

Chaînes de modules solaires combinées avec un courant total supérieur à 12,5 A ($I_{\rm dcmax}$).

Réglages du générateur photovoltaïque :

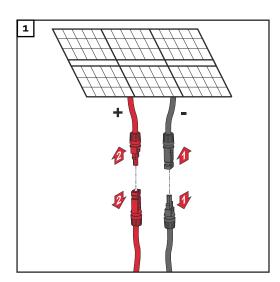

PV 1 : **ON** PV 2 : **OFF**

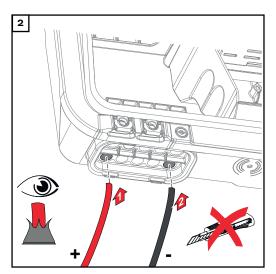
PV 1 + PV 2 (connectés en parallèle) :

ON

IMPORTANT!

La répartition du courant total (I_{dcmax}) par un pontage de PV 1 à PV 2 au niveau de la borne de raccordement est autorisée jusqu'à \leq 40 A ($I_{SC\ max}$).

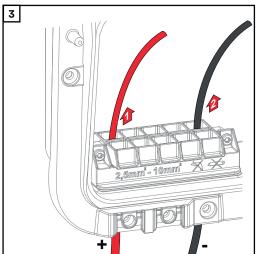


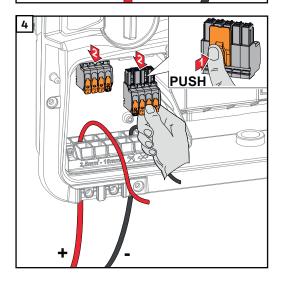

PV 1 inférieur ou égal à 20 A ($I_{SC\ PV1}$) PV 2 inférieur ou égal à 20 A ($I_{SC\ PV2}$)

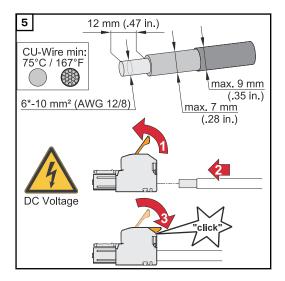
Réglages du générateur photovoltaïque :

PV 1: **ON** PV 2: **ON**

Raccorder les chaînes de modules solaires à l'onduleur



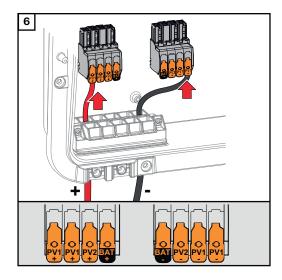


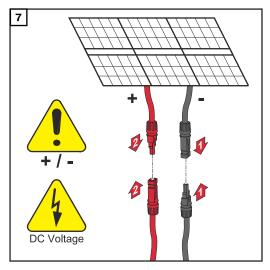

Faire passer les câbles DC à la main à travers les passages DC.

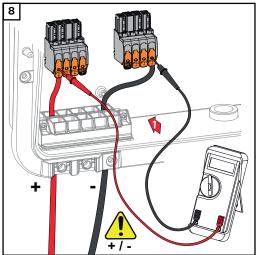
IMPORTANT!

Pousser les câbles à travers les passages DC avant de les dénuder, afin d'éviter que les fils individuels ne se courbent/vrillent.

Sélectionner la section de câble selon les spécifications dans **Câbles autorisés pour la connexion électrique** à partir de la page **54**.

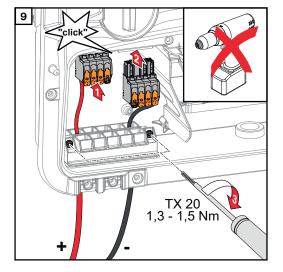

Dénuder les conducteurs uniques sur 12 mm. Ouvrir le levier d'actionnement de la borne de raccordement en le soulevant et insérer jusqu'à la butée le conducteur unique dénudé à l'emplacement prévu à cet effet sur la borne de raccordement. Fermer ensuite le levier d'actionnement jusqu'à enclenchement.


AVERTISSEMENT!


Danger dû à des conducteurs uniques desserrés et/ou mal serrés dans la borne de raccordement.

Cela peut entraîner des dommages corporels et matériels graves.

- Ne raccorder qu'un seul conducteur unique à l'emplacement prévu de la borne de raccordement.
- Vérifier la bonne fixation des conducteurs uniques dans la borne de raccordement.
- S'assurer que le conducteur unique se trouve entièrement dans la borne de raccordement et qu'aucun fil individuel ne dépasse de la borne de raccordement.


Vérifier la tension et la polarité des câbles DC avec un instrument de mesure approprié. Retirer les deux bornes de raccordement DC des emplacements.

⚠ ATTENTION!

Danger dû à l'inversion de la polarité sur les bornes de raccordement.

Cela peut entraîner des dommages matériels graves sur l'onduleur.

- Vérifier la polarité des câbles DC avec un instrument de mesure approprié.
- Vérifier la tension avec un instrument de mesure approprié (max. 1000 V_{DC})

Insérer les bornes de raccordement DC dans les emplacements correspondants jusqu'à enclenchement. Serrer les vis de l'anti-traction au boîtier avec un tournevis (TX20) et un couple de 1,3 à 1,5 Nm.

REMARQUE!

Risque dû à un couple de serrage excessif au niveau de l'anti-traction.

Cela peut endommager l'anti-traction.

Ne pas utiliser de perceuse-visseuse.

Brancher la batterie à l'onduleur

Sécurité

AVERTISSEMENT!

Danger en cas d'erreur de manipulation et d'erreur en cours d'opération.

Cela peut entraîner des dommages corporels et matériels graves.

- ► La mise en service ainsi que les activités de maintenance et d'entretien de l'onduleur et de la batterie ne peuvent être effectuées que par du personnel de service formé par le fabricant de l'onduleur ou de la batterie et dans le cadre des dispositions techniques.
- Avant l'installation et la mise en service, lire les instructions d'installation et les instructions de service du fabricant.

AVERTISSEMENT!

Risque dû à la tension du secteur et à la tension DC des modules solaires exposés à la lumière tout comme des batteries.

Cela peut entraîner des dommages corporels et matériels graves.

- ▶ L'ensemble des opérations de raccordement, de maintenance et de service doivent être exécutées uniquement lorsque les côtés AC et DC de l'onduleur et de la batterie sont hors tension.
- Le raccordement fixe au réseau électrique public ne peut être réalisé que par un installateur électricien agréé.

AVERTISSEMENT!

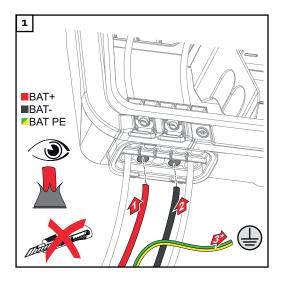
Danger en cas de bornes de raccordement endommagées et/ou encrassées.

Cela peut entraîner des dommages corporels et matériels graves.

- Avant les activités de raccordement, vérifier que les bornes de raccordement ne sont pas endommagées ni encrassées.
- Éliminer les impuretés à l'état hors tension.
- Les bornes de raccordement défectueuses doivent être remises en état par une entreprise spécialisée agréée.

Raccorder la batterie côté DC

ATTENTION!

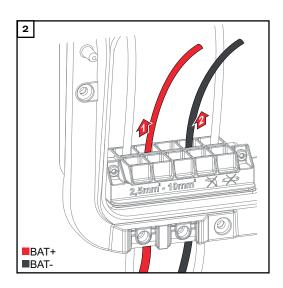

Risque lié au fonctionnement de la batterie à une altitude supérieure à celle autorisée par le fabricant.

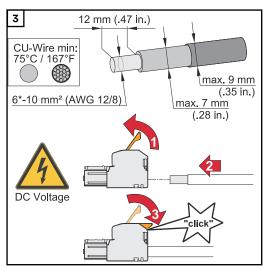
Le fonctionnement de la batterie à une altitude supérieure à celle autorisée peut entraîner une restriction du fonctionnement, une panne et un état non sécurisé de la batterie.

- Respecter les consignes du fabricant concernant l'altitude autorisée.
- N'utiliser la batterie qu'à l'altitude indiquée par le fabricant.

IMPORTANT!

Avant d'installer une batterie, s'assurer que celle-ci est éteinte. La longueur maximale du câble DC pour l'installation de batteries externes doit être prise en compte conformément aux indications du fabricant (voir le chapitre **Batteries adaptées** à la page 25).




Pousser les câbles de batterie à la main à travers les passages DC.

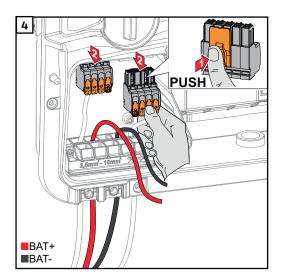
* Le conducteur de terre de la batterie doit être raccordé de manière externe (par ex. armoire de commande). Lors du raccordement de la batterie LG FLEX, le conducteur de terre de la batterie peut être raccordé dans l'onduleur (voir le chapitre Raccorder le conducteur de terre de la batterie LG FLEX à la page 71). Veiller à respecter la section minimale du conducteur de terre de la batterie.

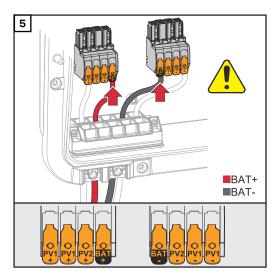
IMPORTANT!

Pousser les câbles à travers les passages DC avant de les dénuder, afin d'éviter que les fils individuels ne se courbent/vrillent.

* La section minimale du câble se trouve dans les instructions de service du fabricant de la batterie

Sélectionner la section de câble selon les spécifications dans **Câbles autorisés pour la connexion électrique** à partir de la page **54**.

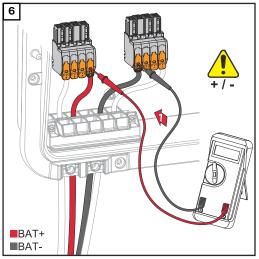

Dénuder les conducteurs uniques sur 12 mm. Ouvrir le levier d'actionnement de la borne de raccordement en le soulevant et insérer jusqu'à la butée le conducteur unique dénudé à l'emplacement prévu à cet effet sur la borne de raccordement. Fermer ensuite le levier d'actionnement jusqu'à enclenchement.


AVERTISSEMENT!

Danger dû à des conducteurs uniques desserrés et/ou mal serrés dans la borne de raccordement.

Cela peut entraîner des dommages corporels et matériels graves.

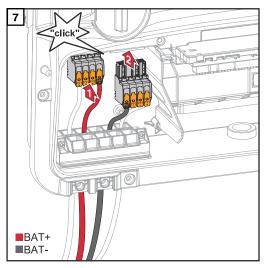
- Ne raccorder qu'un seul conducteur unique à l'emplacement prévu de la borne de raccordement.
- Vérifier la bonne fixation des conducteurs uniques dans la borne de raccordement.
- S'assurer que le conducteur unique se trouve entièrement dans la borne de raccordement et qu'aucun brin individuel ne dépasse de la borne de raccordement.



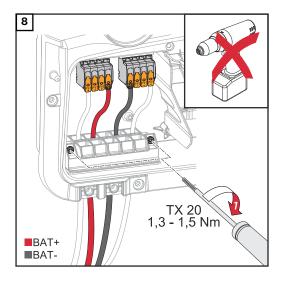
Danger dû à une surtension lors de l'utilisation d'autres prises sur la borne de raccordement.

La batterie et/ou le module solaire peuvent être endommagés par la décharge.

Utiliser uniquement les emplacements avec l'inscription BAT pour le raccordement de la batterie.



ATTENTION!


Danger dû à l'inversion de la polarité sur les bornes de raccordement.

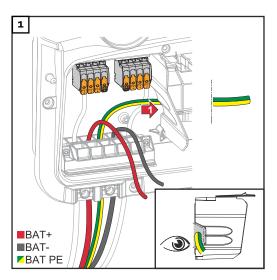
Cela peut entraîner des dommages matériels graves sur l'installation photovoltaïque.

- Vérifier la polarité des câbles DC lorsque la batterie est activée avec un instrument de mesure approprié.
- La tension maximale à l'entrée de la batterie ne doit pas être dépassée (voir Caractéristiques techniques à la page 169).

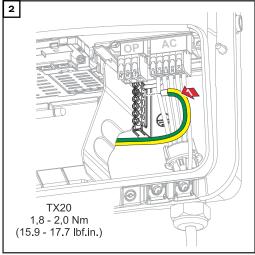
Insérer les bornes de raccordement DC dans les emplacements correspondants jusqu'à enclenchement.

Serrer les vis du guide-câble au boîtier avec un tournevis (TX20) et un couple de 1,3 à 1,5 Nm.

REMARQUE!


Risque dû à un couple de serrage excessif au niveau de l'anti-traction. Cela peut endommager l'anti-traction.

Ne pas utiliser de perceuse-visseuse.


IMPORTANT!

Des informations sur le raccordement côté batterie se trouvent dans les instructions d'installation du fabricant.

Raccorder le conducteur de terre de la batterie LG FLEX

Poser le conducteur de terre de la batterie dans la zone de raccordement AC en passant par le passage de câbles intégré de la séparation de la zone de raccordement.

Fixer le conducteur de terre à la deuxième entrée en partant du haut sur la borne de l'électrode de terre avec un tournevis (TX20) et un couple de 1,8 à 2 Nm.

IMPORTANT!

Des informations sur le raccordement côté batterie se trouvent dans les instructions d'installation du fabricant.

Courant de secours - Connecter le point PV (OP)

Sécurité

AVERTISSEMENT!

Danger en cas d'erreurs en cours d'opération.

Cela peut entraîner des dommages corporels et matériels graves.

- L'installation et le raccordement d'une option ne peuvent être effectués que par du personnel de service formé par Fronius et dans le cadre des dispositions techniques.
- Respecter les consignes de sécurité.

AVERTISSEMENT!

Danger en cas de bornes de raccordement endommagées et/ou encrassées.

Cela peut entraîner des dommages corporels et matériels graves.

- Avant les activités de raccordement, vérifier que les bornes de raccordement ne sont pas endommagées ni encrassées.
- Éliminer les impuretés à l'état hors tension.
- Les bornes de raccordement défectueuses doivent être remises en état par une entreprise spécialisée agréée.

REMARQUE!

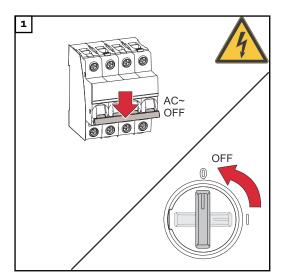
De brèves interruptions se produisent lors du passage du mode couplé au réseau au mode d'alimentation en courant de secours. La sortie PV Point nécessite une puissance photovoltaïque provenant des modules solaires ou d'une batterie pour alimenter les consommateurs connectés.

Les consommateurs connectés ne sont pas alimentés pendant la commutation.

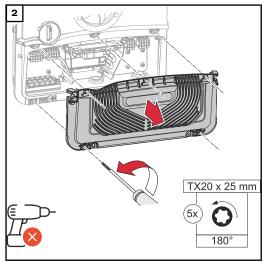
Ne pas connecter de consommateurs qui nécessitent une alimentation électrique ininterrompue (par ex. réseaux informatiques, dispositifs médicaux de maintien en vie).

IMPORTANT!

Les lois, normes et réglementations nationales en vigueur ainsi que les consignes de l'opérateur réseau concerné doivent être respectées et appliquées. Il est fortement recommandé que l'installation soit organisée avec l'opérateur réseau et expressément approuvée par lui. Cette obligation s'applique en particulier à l'installateur du système.


Installation

REMARQUE!

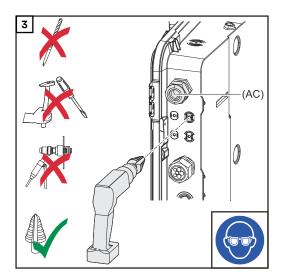

Toutes les charges qui sont alimentées par la borne de raccordement OP doivent être protégées par un disjoncteur différentiel.

Pour assurer le fonctionnement de ce disjoncteur différentiel, une connexion doit être établie entre le conducteur neutre N´ (OP) et la terre.

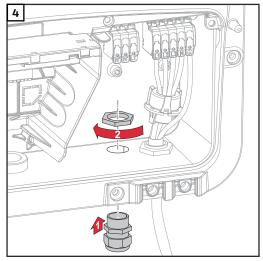
Pour le schéma de connexions recommandé par Fronius, voir **Borne de courant de secours – Point PV (OP)** à la page **189**.

Déconnecter le système de protection automatique et le sectionneur DC. Régler le sectionneur DC sur la position « Off ».

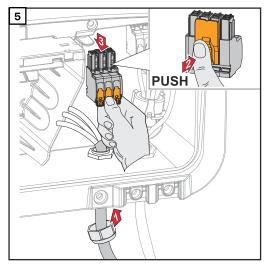
Desserrer les 5 vis du cache de la zone de raccordement à l'aide d'un tournevis (TX20) et faire un tour de 180° vers la gauche.


Retirer le cache de la zone de raccordement de l'appareil.

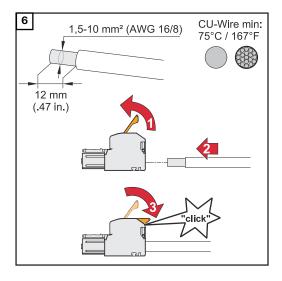
ATTENTION!


Danger dû à un perçage incorrect ou non conforme.

Des blessures aux yeux et aux mains dues à des projections de pièces et à des arêtes vives, ainsi que des dommages sur l'onduleur peuvent en résulter.


- Porter des lunettes de protection appropriées pendant les travaux de perçage.
- Utiliser uniquement un foret étagé pour le perçage.
- S'assurer de l'absence de dommages à l'intérieur de l'appareil (par ex. le bloc de raccordement).
- ▶ Ajuster le diamètre de perçage au connecteur concerné.
- ▶ Ébarder les trous avec un outil approprié.
- ► Enlever les résidus d'alésage de l'onduleur.

Percer le guide-câble optionnel avec un foret étagé.

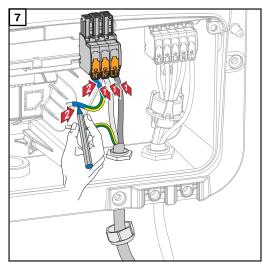


Insérer le raccord de câble dans le trou et la fixer avec le couple de serrage indiqué par le fabricant.

Introduire le câble secteur dans le raccord de câble par le bas.

Débrancher la borne de raccordement OP.

Dénuder les conducteurs uniques de 12 mm.

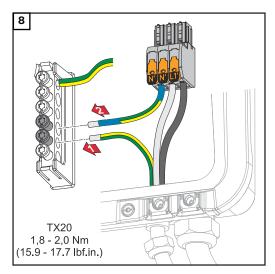

La section de câble doit être comprise entre 1,5 mm² et 10 mm². Ouvrir le levier d'actionnement de la borne de raccordement en le soulevant et insérer jusqu'à la butée le conducteur unique dénudé à l'emplacement prévu à cet effet sur la borne de raccordement. Fermer ensuite le levier d'actionnement jusqu'à enclenchement.

AVERTISSEMENT!

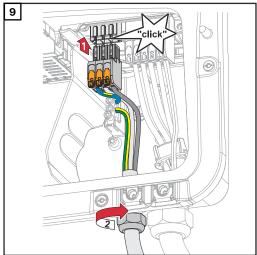
Danger dû à des conducteurs uniques desserrés et/ou mal serrés dans la borne de raccordement.

Cela peut entraîner des dommages corporels et matériels graves.

- Ne raccorder qu'un seul conducteur unique à l'emplacement prévu de la borne de raccordement.
- Vérifier la bonne fixation des conducteurs uniques dans la borne de raccordement.
- S'assurer que le conducteur unique se trouve entièrement dans la borne de raccordement et qu'aucun fil individuel ne dépasse de la borne de raccordement.



L1' Conducteur de phase N' Conducteur neutre


N' Conducteur PEN

IMPORTANT!

Le conducteur PEN doit être conçu avec des extrémités marquées en bleu de façon permanente conformément aux réglementations nationales et présenter une section de 10 mm².

Fixer le conducteur de terre et le conducteur PEN à la borne de l'électrode de terre avec un tournevis (TX20) et un couple de serrage de 1,8 à 2 Nm.

Insérer la borne de raccordement OP dans l'emplacement OP jusqu'à enclenchement. Fixer l'écrou borgne du raccord de câble avec le couple de serrage indiqué par le fabricant.

Tester le mode d'alimentation en courant de secours Il est recommandé de tester le mode d'alimentation en courant de secours :

- lors de la première installation et configuration ;
- après des travaux sur l'armoire de commande ;
- en cours d'exploitation (recommandation : au moins une fois par an).

Pour le mode d'essai, il est recommandé de charger la batterie à 30 % minimum.

Une description de l'exécution du mode d'essai se trouve sur la **check-list - Alimentation en courant de secours** (https://www.fronius.com/en/search-page, référence : 42,0426,0365).

Raccorder le câble de communication de données

Participant Modbus

Les entrées M0 et M1 peuvent être librement sélectionnées. Un maximum de 4 éléments Modbus peuvent être connectés à la borne de raccordement Modbus sur les entrées M0 et M1.

IMPORTANT!

Il n'est possible de connecter qu'un compteur primaire, une batterie et un Ohmpilot par onduleur. En raison du transfert de données élevé de la batterie, celle-ci occupe 2 éléments. Si la fonction **Commande d'onduleur via Modbus** est activée dans le menu **Communication > Modbus**, aucun élément Modbus n'est disponible. Il n'est pas possible d'envoyer et de recevoir des données en même temps.

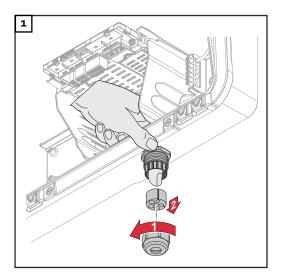
Exemple 1:

Entrée	Batterie	Fronius Ohmpilot	Quantité Compteur primaire	Quantité Compteur se- condaire
(ош)	\bigotimes	\otimes	0	4
Modbus o (Mo)			0	2
Ψoσ	②	⊘	0	1
Modbus 1 (M1)	8	8	1	3

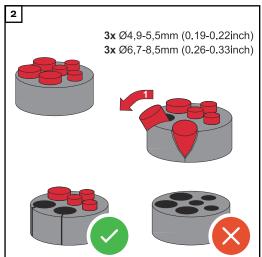
Exemple 2:

Entrée	Batterie	Fronius Ohmpilot	Quantité Compteur primaire	Quantité Compteur se- condaire
Modbus o (Mo)	8	8	1	3
(M1)	\bigotimes		0	4
Modbus 1 (M1)	⊘	*	0	2
Ψοσ	⊘	⊘	0	1

Poser le câble de communication de données

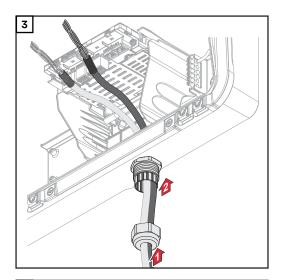

IMPORTANT!

Si des câbles de communication de données sont introduits dans l'onduleur, respecter les points suivants :

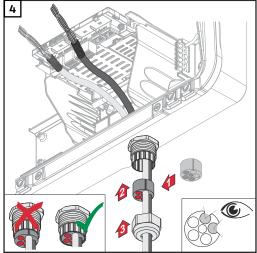

- En fonction du nombre et de la section des câbles de communication de données insérés, retirer les bouchons obturateurs correspondants de la garniture du joint, et mettre en place les câbles de communication de données.
- Mettre impérativement les bouchons obturateurs correspondants dans les ouvertures libres de la garniture du joint.

IMPORTANT!

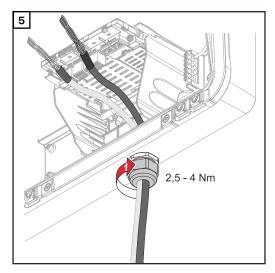
En cas d'absence ou d'installation incorrecte des bouchons obturateurs, la classe de protection IP66 ne peut pas être garantie.



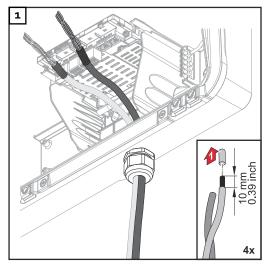
Desserrer l'écrou borgne du raccord de câble et dégager la bague d'étanchéité avec les bouchons obturateurs de l'intérieur de l'appareil.

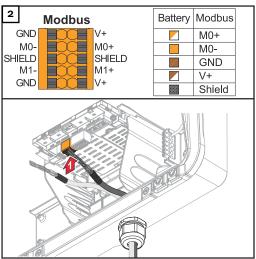


Déployer la bague d'étanchéité à l'endroit où le bouchon obturateur doit être retiré.


* Retirer le bouchon obturateur à l'aide d'un mouvement latéral.

Faire d'abord passer le câble de données par l'écrou borgne du raccord de câble, puis par l'ouverture du boîtier.




Insérer la bague d'étanchéité entre l'écrou borgne et l'ouverture du boîtier. Enfoncer le câble de données dans le guide-câble du joint. Enfoncer ensuite le joint jusqu'au bord inférieur du raccord de câble.

Serrer l'écrou borgne du raccord de câble avec un couple de 2,5 à 4 Nm max.

Connecter le câble de communication de la batterie

Dénuder les conducteurs uniques sur 10 mm et monter éventuellement des cosses terminales.

IMPORTANT!

Raccorder les conducteurs individuels avec une cosse terminale appropriée si plusieurs conducteurs individuels sont raccordés à une entrée des bornes de raccordement Push-in.

Insérer les câbles dans les emplacements correspondants et vérifier qu'ils sont maintenus en place.

IMPORTANT!

Pour la connexion de « Données +/- » et « Activer +/- », utiliser uniquement des câbles à paires torsadées, voir le chapitre Câbles autorisés pour le connecteur de communication des données à la page 55.

Torsader le blindage du câble et le brancher sur « SHIELD ».

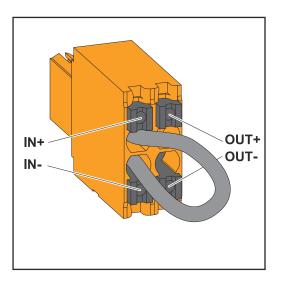
IMPORTANT!

Un blindage incorrect peut entraîner des interférences lors de la communication de données.

Pour les raccordements recommandés par Fronius, voir la page 183.

Résistances de terminaison

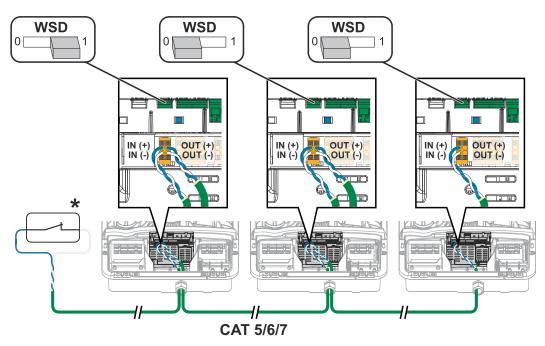
Il est possible que l'installation fonctionne sans résistances de terminaison. Cependant, pour un fonctionnement parfait, il est recommandé d'utiliser ces dernières conformément à l'aperçu suivant en raison des interférences.


Pour en savoir plus sur les câbles autorisés et les distances maximales pour la zone de communication de données, voir le chapitre **Câbles autorisés pour le connecteur de communication des données** à la page **55**.

IMPORTANT!

Des résistances de terminaison qui ne sont pas réglées comme indiqué sur l'illustration peuvent entraîner des interférences lors de la communication de données.

Installer le WSD (Wired Shut Down)


IMPORTANT!

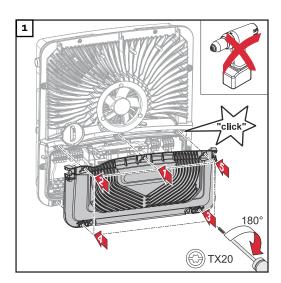
La borne de raccordement Push-in WSD située dans la zone de raccordement de l'onduleur est livrée de série avec un pont. En cas d'installation à partir d'un dispositif de déclenchement ou d'une chaîne WSD, le pont doit être retiré.

Pour le premier onduleur avec un dispositif de déclenchement raccordé dans la chaîne WSD, l'interrupteur WSD doit être en position 1 (maître). Pour tous les autres onduleurs, l'interrupteur WSD est en position 0 (esclave).

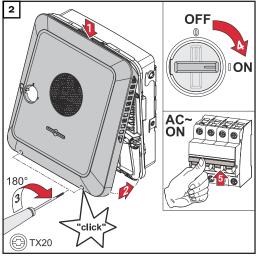
Distance max. entre deux appareils : 100 m

Nombre max. d'appareils : 28

* Contact sans potentiel du dispositif de déclenchement (par ex. protection centrale du réseau et de l'installation). Si plusieurs contacts sans potentiel sont utilisés dans une chaîne WSD, ils doivent être connectés en série.


Raccorder et mettre en service l'onduleur

Fermer la zone de raccordement/le couvercle du boîtier de l'onduleur et le mettre en service


REMARQUE!

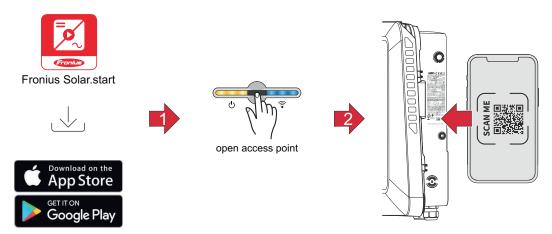
Pour des raisons de sécurité, le couvercle du boîtier est équipé d'un dispositif de verrouillage qui permet son pivotement sur l'onduleur uniquement lorsque le sectionneur DC est désactivé.

- Accrocher et faire pivoter le couvercle du boîtier sur l'onduleur uniquement lorsque le sectionneur DC est désactivé.
- ▶ Ne pas accrocher et faire pivoter le couvercle du boîtier en forçant.

Placer le cache sur la zone de raccordement. Serrer les 5 vis dans l'ordre indiqué à l'aide d'un tournevis (TX20) et faire un tour de 180° vers la droite.

Accrocher le couvercle du boîtier sur l'onduleur par le haut.

Appuyer sur la partie inférieure du couvercle du boîtier et fixer les 2 vis avec un tournevis (TX20) en effectuant un tour de 180° vers la droite. Régler le sectionneur DC sur la position « On ». Enclencher le système de protection automatique. Pour les systèmes avec une batterie, respecter l'ordre de mise en marche selon le chapitre Batteries adaptées à la page 25.

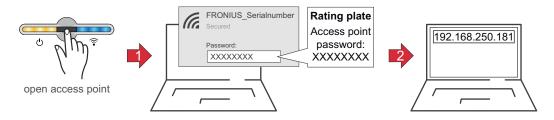

IMPORTANT! Ouvrir le point d'accès WLAN à l'aide du capteur optique, voir le chapitre Fonctions des boutons et LED d'état à la page 35

Première mise en service de l'onduleur Lors de la première mise en service de l'onduleur, divers paramètres setup doivent être ajoutés.

Lorsque le setup est annulé avant la fin, les données saisies ne sont pas sauvegardées et l'écran de démarrage avec l'assistant d'installation s'affiche à nouveau. En cas d'interruption due à une panne de courant par exemple, les données sont sauvegardées. La mise en service reprend à l'étape où elle a été interrompue, après le rétablissement de l'alimentation électrique. Si le setup a été interrompu, l'onduleur alimente le réseau avec 500 W max. et la LED de fonctionnement clignote en jaune. Le setup pays peut être configuré uniquement lors de la première mise en service de l'onduleur. Pour modifier le setup pays ultérieurement, contacter l'installateur/support technique.

Installation avec l'application

L'application Fronius Solar.start est nécessaire pour l'installation. Selon le terminal utilisé pour l'installation, l'application est disponible sur la plate-forme respective.



- Télécharger et installer l'application Fronius Solar.start.
- Ouvrir l'Access Point en effleurant le capteur 🖔 .
 - ✓ La LED de communication clignote en bleu.
- Ouvrir l'application Fronius Solar.start et suivre l'assistant d'installation. Scanner le code QR sur la plaque signalétique avec un smartphone ou une tablette pour se connecter à l'onduleur.
- Ajouter les composants périphériques dans Fronius Solar.web et mettre en marche l'installation photovoltaïque.

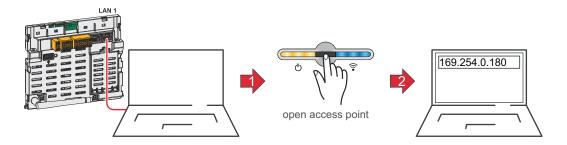
L'assistant réseau et le setup produit peuvent être effectués indépendamment l'un de l'autre. Une connexion réseau est nécessaire pour ouvrir l'assistant d'installation Fronius Solar.web.

Installation avec le navigateur

WLAN:

- Ouvrir l'Access Point en effleurant le capteur 🖔 .
 - ✓ La LED de communication clignote en bleu.
- Établir la connexion à l'onduleur dans les paramètres réseau (l'onduleur est affiché avec le nom « FRONIUS_ » et le numéro de série de l'appareil).

Saisir et confirmer le mot de passe de la plaque signalétique.

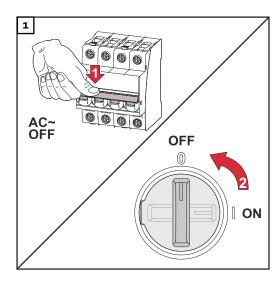

IMPORTANT!

Pour la saisie du mot de passe sous Windows 10, le lien **Se connecter en utili**sant une clé de sécurité réseau à la place doit d'abord être activé afin de pouvoir se connecter avec le mot de passe.

- Saisir l'adresse IP 192.168.250.181 dans la barre d'adresse du navigateur et confirmer. L'assistant d'installation s'ouvre.
- Suivre l'assistant d'installation dans les différents domaines et compléter l'installation.
- Ajouter les composants périphériques dans Fronius Solar.web et mettre en marche l'installation photovoltaïque.

L'assistant réseau et le setup produit peuvent être effectués indépendamment l'un de l'autre. Une connexion réseau est nécessaire pour ouvrir l'assistant d'installation Fronius Solar.web.

Ethernet:



- Établir la connexion à l'onduleur (LAN1) à l'aide d'un câble réseau (CAT5 STP ou supérieur).
- Ouvrir l'Access Point en effleurant 1x le capteur 🖔 .
 - ✓ La LED de communication clignote en bleu.
- Saisir l'adresse IP 169.254.0.180 dans la barre d'adresse du navigateur et confirmer. L'assistant d'installation s'ouvre.
- Suivre l'assistant d'installation dans les différents domaines et compléter l'installation.
- Ajouter les composants périphériques dans Fronius Solar.web et mettre en marche l'installation photovoltaïque.

L'assistant réseau et le setup produit peuvent être effectués indépendamment l'un de l'autre. Une connexion réseau est nécessaire pour ouvrir l'assistant d'installation Fronius Solar.web.

Mettre l'onduleur hors tension et le rallumer

Mettre l'onduleur hors tension et le rallumer

- Déconnecter le système de protection automatique.
- 2. Régler le sectionneur DC sur la position « Off ».

Pour remettre l'onduleur en service, effectuer les étapes mentionnées cidessus dans l'ordre inverse.

IMPORTANT!

Attendre l'expiration de la durée de décharge des condensateurs de l'ondu-

Paramètres – Interface utilisateur de l'onduleur

Paramètres utilisateur

Connexion utilisateur

- Ouvrir l'interface utilisateur de l'onduleur dans le navigateur.
- Se connecter avec le nom d'utilisateur et le mot de passe au menu Connexion ou au menu Utilisateur > Connexion utilisateur.

IMPORTANT!

Selon l'autorisation de l'utilisateur, des réglages peuvent être effectués dans les différentes points de menu.

Sélectionner la langue

Sélectionner la langue souhaitée dans le menu **Utilisateur > Langue**.

Configuration de l'appareil

Composants

Sous **Ajouter+ des composants**, tous les composants existants sont ajoutés au système.

Générateur photovoltaïque

Activer le tracker MPP et entrer la puissance photovoltaïque connectée dans le champ correspondant. Pour les chaînes de modules solaires combinées, **PV 1 + PV 2 connectés en parallèle** doit être activé.

Compteur primaire

Pour garantir un fonctionnement sans faille avec d'autres générateurs d'énergie, il est important que le Fronius Smart Meter soit installé au niveau du point d'injection. L'onduleur et les autres générateurs doivent être raccordés au réseau public via le Fronius Smart Meter.

Ce réglage affecte également le comportement de l'onduleur pendant la nuit. Si la fonction est désactivée, l'onduleur passe en mode veille dès que la puissance photovoltaïque n'est plus disponible et que le système de gestion de l'énergie ne donne aucune consigne concernant la batterie (par ex. : état de charge minimal atteint). Le message **Power low** s'affiche. L'onduleur redémarre dès que le système de gestion de l'énergie envoie une consigne ou dès que la puissance photovoltaïque est à nouveau suffisante.

Si la fonction est activée, l'onduleur reste connecté au réseau pour pouvoir à tout moment absorber de l'énergie provenant d'autres générateurs.

Après le raccordement du compteur, la position doit être configurée. Chaque Smart Meter doit disposer de sa propre adresse Modbus.

La valeur en watt affichée par le compteur de générateur correspond à la somme de tous les compteurs de générateur. La valeur en watt affichée par le compteur secondaire correspond à la somme de tous les compteurs secondaires.

Batterie

Si le mode de limitation de l'état de charge est réglé sur Automatique, les valeurs Limite de charge minimale et Limite de charge maximale sont prédéfinies selon les spécifications techniques du fabricant de batterie.

Si le mode de limitation de l'état de charge est réglé sur Manuel, les valeurs Limite de charge minimale et Limite de charge maximale peuvent être modifiées après consultation du fabricant de batterie dans le cadre de ses spécifications techniques.

Avec le réglage Autoriser la charge de batterie à partir d'autres générateurs sur le réseau domestique, la charge de batterie à partir d'autres générateurs est activée/désactivée.

La puissance absorbée de l'onduleur Fronius peut être limitée par une indication dans le champ **Puissance de charge max. de AC**. Au maximum, la puissance absorbée peut atteindre la puissance nominale AC de l'onduleur Fronius.

Avec le réglage Autoriser la charge de la batterie à partir du réseau public + Autoriser la charge de la batterie à partir d'autres générateurs sur le réseau domestique, la charge de la batterie à partir du réseau public et, le cas échéant, à partir d'autres générateurs sur le réseau domestique est activée/désactivée. Les consignes normatives ou relatives au mode de rémunération doivent être prises en compte pour ce réglage. Indépendamment de ce réglage, les charges nécessaires liées à la maintenance à partir du réseau public sont effectuées (par exemple, la recharge forcée comme protection contre la décharge profonde).

IMPORTANT!

Fronius décline toute responsabilité pour les dommages sur les batteries externes.

Ohmpilot

Tous les Ohmpilot disponibles dans le système sont affichés. Sélectionner l'Ohmpilot souhaité et l'ajouter au système via **Ajouter**.

Fonctions et E/S

Alimentation en courant de secours

Le mode alimentation en courant de secours peut être sélectionné entre **Off** et **PV Point**.

IMPORTANT!

Lors de la configuration du mode alimentation en courant de secours **PV Point**, les instructions du chapitre **Sécurité** à la page **72** doivent être respectées.

Tension nominale de l'alimentation en courant de secours

Lorsque le mode alimentation en courant de secours est activé, la tension nominale du réseau public doit être sélectionnée.

Limite d'avertissement de l'état de charge

À partir de cette capacité restante de la batterie en mode alimentation en courant de secours, un message d'avertissement est délivré.

Capacité de réserve

La valeur réglée fournit une capacité restante (en fonction de la capacité de la batterie) qui est réservée à l'alimentation en courant de secours. La batterie n'est pas déchargée en dessous de la capacité restante lorsqu'elle est couplée au réseau.

Gestion de la charge

Jusqu'à 4 broches pour la gestion de la charge peuvent être sélectionnées ici. D'autres réglages de la gestion de la charge sont disponibles dans le point de menu **Gestion de la charge**.

Par défaut : broche 1

Australie - Demand Response Mode (DRM)

Ici, les broches pour une commande via DRM peuvent être configurées :

Mode	Description	Informations	Broche DRM	Br- oche E/S
DRMo	L'onduleur se déconnecte du réseau	DRMo intervient en cas d'interruption et en cas de court-circuit sur les lignes REF GEN ou COM LOAD, ou en cas de com- binaisons non valables de DRM1 - DRM8. Le relais réseau s'ouvre.	REF GEN COM LOAD	IO4 IO5
DRM1	Import P _{nom} ≤ 0 % sans déconnexion du réseau	actuellement non pris en charge	DRM 1/5	IN6
DRM2	Import P _{nom} ≤ 50 %	actuellement non pris en charge	DRM 2/6	IN7
DRM3	Import P _{nom} ≤ 75 % & +Q _{rel} * ≥ 0 %	actuellement non pris en charge	DRM 3/7	IN8

Mode	Description	Informations	Broche DRM	Br- oche E/S
DRM4	Import P _{nom} ≤ 100 %	actuellement non pris en charge	DRM 4/8	IN9
DRM5	Export P _{nom} ≤ 0 % sans déconnexion du réseau	actuellement non pris en charge	DRM 1/5	IN6
DRM6	Export P _{nom} ≤ 50 %	actuellement non pris en charge	DRM 2/6	IN7
DRM7	Export $P_{\text{nom}} \le 75 \%$ & $-Q_{\text{rel}}^* \ge 0 \%$	actuellement non pris en charge	DRM 3/7	IN8
DRM8	Export P _{nom} ≤ 100 %	actuellement non pris en charge	DRM 4/8	IN9

Les pourcentages se réfèrent toujours à la puissance nominale de l'appareil.

IMPORTANT!

Si la fonction **Australie - Demand Response Mode (DRM)** est activée et qu'aucune commande DRM n'est connectée, l'onduleur passe en mode veille.

Demand Response Modes (DRM)

Pour le setup pays Australie, une valeur de puissance apparente absorbée et de puissance apparente délivrée peut être saisie ici.

Onduleur

« Forcer le mode Veille »

Lorsque cette fonction est activée, le mode d'injection dans le réseau de l'onduleur est interrompu. Cela permet de déconnecter l'onduleur sans puissance et de préserver ses composants. Au redémarrage de l'onduleur, le mode Veille est automatiquement désactivé.

PV 1 et PV 2

Paramètres	Plage de va- leurs	Description
Mode	Off	Le tracker MPP est désactivé.
	Auto	L'onduleur utilise la tension à laquelle la puissance maximale possible du tracker MPP est possible.
	Fix	Le tracker MPP utilise la tension définie dans UDC fix .
UDC fix	80 - 530 V	L'onduleur utilise la tension fixe prédéfinie qui est utilisée au niveau du tracker MPP.
Dynamik Peak	Off	La fonction est désactivée.
Manager	On	L'ensemble de la chaîne de modules solaires est contrôlé afin d'identifier le potentiel d'optimisation et de déterminer la meilleure tension possible pour le mode d'injection dans le réseau.

« Signal pour télécommande centralisée »

Les signaux pour télécommande centralisée sont des signaux envoyés par l'entreprise du secteur de l'électricité pour activer ou désactiver des consommateurs contrôlables. Selon l'installation, il peut arriver que l'onduleur atténue ou amplifie les signaux pour télécommande centralisée. Les réglages ci-dessous permettent de remédier à cette situation si nécessaire.

Paramètres	Plage de va- leurs	Description
Réduction de	Off	La fonction est désactivée.
l'influence	On	La fonction est activée.
Fréquence du signal pour télécommande centralisée	100 - 3 000 Hz	La fréquence définie par l'entreprise du secteur de l'électricité est à renseigner ici.
Inductivité du réseau	0,00001 - 0,00 5 H	La valeur mesurée au point d'injection est à renseigner ici.

Mesures contre les déclenchements intempestifs de l'interrupteur différentiel/ l'unité de surveillance des courants résiduels

(En cas d'utilisation d'un disjoncteur différentiel 30 mA)

REMARQUE!

Les directives nationales, l'opérateur réseau ou d'autres circonstances peuvent exiger l'installation d'un disjoncteur différentiel sur le câble de raccordement AC.

En règle générale, un disjoncteur différentiel de type A est suffisant. Quelquefois, et en fonction de conditions locales, il est possible que le disjoncteur de courant de fuite de type A se déclenche par erreur. C'est pourquoi Fronius recommande d'utiliser un disjoncteur différentiel adapté au convertisseur de fréquence avec un courant de déclenchement d'au moins 100 mA, conformément aux réglementations nationales.

Paramètres	Plage de va- leurs	Description
Désactivation de l'onduleur	О	Aucune mesure n'est prise pour éviter les déclenchements intempestifs.
avant déclen- chements de l'interrupteur différentiel 30 mA	1	L'onduleur se déconnecte à 15 mA avant que le disjoncteur différentiel ne se déclenche.

Paramètres	Plage de va- leurs	Description
Facteur de courant de fuite pour réduire les déclenchements intempestifs de l'unité de surveillance des courants résiduels/l'interrupteur différentiel (uniquement pour Symo GEN24)	0 - 0,25 (par défaut : 0,16)	La réduction de la valeur de réglage permet de réduire le courant de fuite et d'augmenter la tension du circuit intermédiaire, ce qui diminue légèrement le rendement. La valeur de réglage 0,16 permet un rendement optimal.

Avertissement iso

Paramètres	Plage de va- leurs	Description
Avertissement	Off	L'avertissement d'isolation est désactivé.
iso	On	L'avertissement d'isolation est activé. Un avertissement est émis en cas de défaut d'isolation.
Mode pour la mesure d'isola- tion	Précis	La surveillance de l'isolation s'effectue avec la plus grande précision et la résis- tance d'isolement mesurée est affichée sur l'interface utilisateur de l'onduleur.
	Rapide	La surveillance de l'isolation est effectuée avec une précision moindre, ce qui réduit la durée de la mesure d'isolation et la va- leur d'isolation n'est pas affichée sur l'in- terface utilisateur de l'onduleur.
Valeur seuil pour l'avertisse- ment d'isolation	100 000 - 10 000 000	Si cette valeur seuil n'est pas atteinte, le message d'état 1083 s'affiche sur l'inter- face utilisateur de l'onduleur.

Alimentation en courant de secours

Paramètres	Plage de va- leurs	Description
Tension nomi- nale de l'ali- mentation en courant de se- cours	220 - 240 V	Tension nominale de phase délivrée en mode d'alimentation en courant de se- cours.

Paramètres	Plage de va- leurs	Description
Offset de la fréquence d'ali- mentation en courant de se- cours	-5 à +5 Hz	La valeur de réglage permet de réduire ou d'augmenter la fréquence d'alimentation en courant de secours nominale (voir Caractéristiques techniques) de la valeur d'offset. La valeur par défaut est de +3 Hz. Les consommateurs connectés (par ex. Fronius Ohmpilot) reconnaissent le mode d'alimentation en courant de secours actif sur la base de la fréquence modifiée et réagissent en conséquence (par ex. activation du mode d'économie d'énergie).
		IMPORTANT! Lorsqu'une autre source AC est disponible dans le système, la fréquence d'alimentation en courant de secours ne doit pas être modifiée. La valeur par défaut (+3 Hz) empêche que d'autres sources AC puissent être alimentées en parallèle avec l'onduleur et déclencher des surtensions ainsi que la coupure du propre réseau électrique de secours.
Courant de se- cours - protec- tion contre la sous-tension - valeur limite U< [pu]	0 - 2 %V	La valeur de réglage permet de définir la valeur limite pour la désactivation du mode alimentation en courant de secours. Par ex. valeur de réglage 0,9 = 90 % de la tension nominale.
Courant de se- cours - protec- tion contre la sous-tension - durée U<	0,04 - 20 s	Durée de déclenchement en cas de valeur inférieure à la valeur limite de la protection contre la sous-tension de l'alimentation en courant de secours.
Courant de se- cours - protec- tion contre la surtension - va- leur limite U> [pu]	0 - 2 %V	La valeur de réglage permet de définir la valeur limite pour la désactivation du mode alimentation en courant de secours. Par ex. valeur de réglage 1,1 = 110 % de la tension nominale.
Courant de se- cours - protec- tion contre la surtension - durée U>	0,04 - 20 s	Durée de déclenchement en cas de valeur supérieure à la valeur limite de la protec- tion contre la surtension de l'alimentation en courant de secours.
Alimentation en courant de se- cours - retard de redémarrage	o - 600 s	Temps d'attente pour la reprise du mode d'alimentation en courant de secours après une désactivation.

Paramètres	Plage de va- leurs	Description
Alimentation en courant de se- cours - tenta- tive de redémarrage	1-10	Nombre maximal de tentatives de redémarrage automatisé. Lorsque le nombre maximal de tentatives de redémarrage automatique est atteint, le message de service 1177 doit être acquitté manuellement.
Surveillance de	Off	La fonction est désactivée
fréquence ex- terne dans le mode alimenta- tion en courant de secours (seulement pour l'Italie)	On	Pour le mode d'alimentation en courant de secours (Full Backup) en Italie, la surveil-lance externe de la fréquence doit être activée. Avant de mettre fin au mode d'alimentation en courant de secours, la fréquence du réseau est vérifiée. Lorsque la fréquence du réseau se situe dans la plage limite autorisée, les consommateurs sont connectés au réseau public.
Alimentation en courant de se- cours - temps de désactiva- tion en cas de court-circuit	0,001 - 60 s	En cas de court-circuit en mode d'alimen- tation en courant de secours, ce dernier est interrompu dans le durée réglée.

Gestion de l'énergie

Charge de batterie maximale autorisée à partir du réseau public

En Allemagne, de nouvelles règles pour la charge de batterie s'appliquent depuis le 1er janvier 2024. La puissance de charge maximale des réseaux publics est de 4,2 kW pour la commande conformément au §14a de la loi sur l'industrie de l'énergie (EnWG).

L'onduleur doit se connecter à Fronius Solar.web à des fins de documentation et être connecté en permanence à Internet pour pouvoir justifier la mise en œuvre des ordres de commande externes.

Par défaut, la puissance de charge est limitée à une valeur inférieure. Il faut veiller à ne pas utiliser plus que la puissance de charge autorisée de 4,2 kW.

Gestion de la batterie

Paramètres de l'état de charge de la batterie

Si le mode de limitation de l'état de charge est réglé sur Automatique, les valeurs Limite de charge minimale et Limite de charge maximale sont prédéfinies selon les spécifications techniques du fabricant de batterie.

Si le mode de limitation de l'état de charge est réglé sur Manuel, les valeurs Limite de charge minimale et Limite de charge maximale peuvent être modifiées après consultation du fabricant de la batterie dans le cadre de ses spécifications techniques. En cas d'alimentation en courant de secours, les valeurs définies ne sont pas prises en compte.

Avec le réglage Autoriser la charge de la batterie à partir d'autres générateurs sur le réseau domestique, la charge de la batterie à partir d'autres générateurs est activée/désactivée.

La puissance absorbée de l'onduleur Fronius peut être limitée par une indication dans le champ **Puissance de charge max. de AC**. Au maximum, la puissance absorbée peut atteindre la puissance nominale AC de l'onduleur Fronius.

Avec le réglage Autoriser la charge de la batterie à partir du réseau public + Autoriser la charge de la batterie à partir d'autres générateurs sur le réseau domestique, la charge de la batterie à partir du réseau public et, le cas échéant, à partir d'autres générateurs sur le réseau domestique est activée/désactivée. Les consignes normatives ou relatives au mode de rémunération doivent être prises en compte pour ce réglage. Indépendamment de ce réglage, les charges nécessaires liées à la maintenance à partir du réseau public sont effectuées (par exemple, la recharge forcée comme protection contre la décharge profonde).

Limite d'avertissement de l'état de charge

À partir de cette capacité restante de la batterie en mode alimentation en courant de secours, un message d'avertissement est délivré.

Capacité de réserve

La valeur réglée fournit une capacité restante (en fonction de la capacité de la batterie) qui est réservée à l'alimentation en courant de secours. La batterie n'est pas déchargée en dessous de la capacité restante lorsqu'elle est couplée au réseau.

IMPORTANT!

Fronius décline toute responsabilité pour les dommages sur les batteries externes.

Gestion de la batterie en fonction de l'heure

Grâce à la gestion de la batterie en fonction de l'heure, il est possible de prédéfi-

nir, de limiter ou d'éviter la charge/décharge de la batterie à une puissance définie

La gestion de la batterie est par exemple influencée par les paramètres suivants :

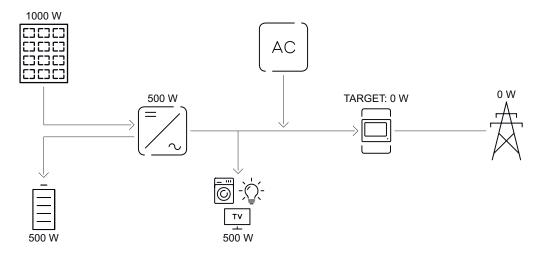
- Charge de batterie autorisée à partir du réseau public
- Limitation de puissance de l'onduleur, du système de stockage ou de l'ensemble du système
- Consignes de commande via Modbus
- Optimisation de l'autoconsommation

IMPORTANT!

Les règles définies pour la gestion de la batterie sont la deuxième priorité la moins importante après l'optimisation de l'autoconsommation. Selon la configuration, il se peut que les règles ne soient pas respectées en raison d'autres paramètres.

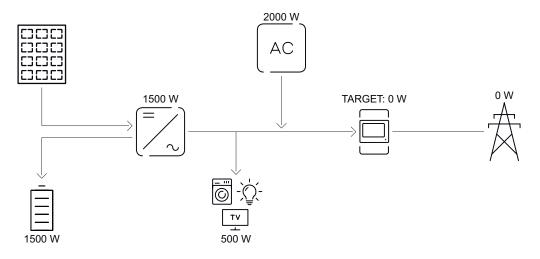
Les valeurs suivantes peuvent être sélectionnées pour les règles de gestion de la batterie en fonction de l'heure :

- Puissance de charge max.
 - La batterie est chargée au max. selon la puissance réglée dans le champ de saisie **Puissance**.
 - Si l'injection dans le réseau public est impossible et/ou si la consommation directe dans le foyer est possible, la valeur **Puissance de charge max.** réglée est ignorée et l'énergie produite est chargée dans la batterie.
- Puissance charge min.
 - La batterie est chargée au min. selon la puissance réglée dans le champ de saisie **Puissance**.
- Puissance de décharge max.
 - La batterie est déchargée au max. selon la puissance réglée dans le champ de saisie **Puissance**.
- Puissance de décharge min.
 - La batterie est déchargée au min. selon la puissance réglée dans le champ de saisie **Puissance**.

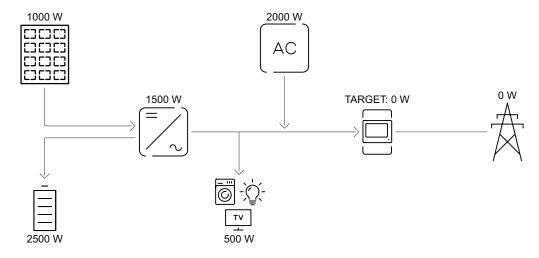

La commande de l'heure, lorsque la règle est valable, est réglée dans les champs de saisie **Heure** et la sélection des **Jours de la semaine**.

Il n'est pas possible de définir une plage horaire au-delà de minuit (00 h 00). **Exemple :** une règle indiquant 22h00 à 06h00 doit être réglée en deux entrées : « 22h00 à 23h59 » et « 00h00 à 06h00 ».

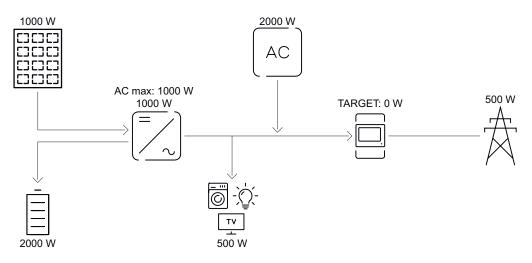
Exemples - Gestion de la batterie en fonction de l'heure


Les exemples ci-dessous ont pour but d'expliquer les flux d'énergie. Les rendements ne sont pas pris en compte.

Système de batterie


Installation photovoltaïque sur l'onduleur	1 000 W
Puissance dans la batterie	500 W
Puissance délivrée (AC) de l'onduleur	500 W
Valeur cible réglée au point d'injection	o W
Injection dans le réseau électrique public	o W
Consommation du foyer	500 W

Système de batterie sans installation photovoltaïque et avec second générateur dans le foyer


Puissance dans la batterie	1 500 W
Puissance absorbée (AC) de l'onduleur	1 500 W
Second générateur dans le foyer	2 000 W
Valeur cible réglée au point d'injection	o W
Injection dans le réseau électrique public	o W
Consommation du foyer	500 W

Système de batterie avec second générateur dans le foyer

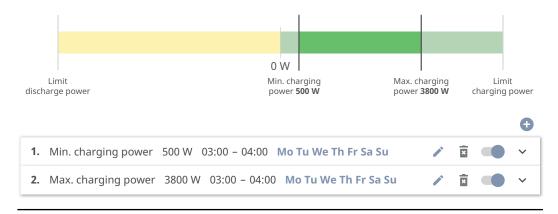
Installation photovoltaïque sur l'onduleur	1 000 W
Puissance dans la batterie	2 500 W
Puissance absorbée (AC) de l'onduleur	1 500 W
Second générateur dans le foyer	2 000 W
Valeur cible réglée au point d'injection	o W
Injection dans le réseau électrique public	o W
Consommation du foyer	500 W

Système de batterie avec second générateur dans le foyer (avec limitation AC max.)

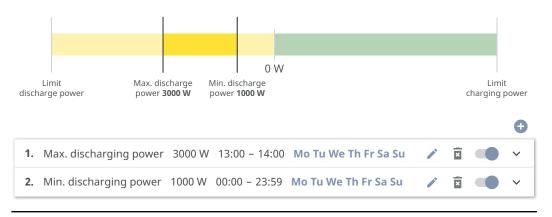


Installation photovoltaïque sur l'onduleur	1 000 W
Puissance dans la batterie	2 000 W
Puissance absorbée AC max. limitée à	1 000 W
Puissance absorbée (AC) de l'onduleur	1 000 W
Second générateur dans le foyer	2 000 W
Valeur cible réglée au point d'injection	o W
Injection dans le réseau électrique public	500 W
Consommation du foyer	500 W

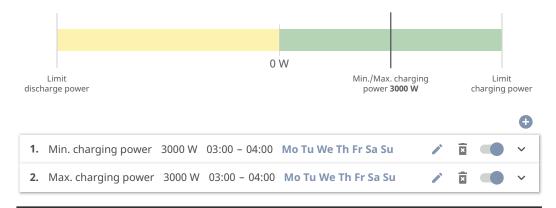
Règles autorisées de contrôle de la batterie Une règle se compose toujours d'une restriction ou d'une consigne et du contrôle temporel **Heure** et **Jours de la semaine** pendant que la règle est active. Les règles ayant la même restriction (par ex. puissance de charge max.) ne doivent pas se chevaucher dans le temps.


Seuils de charge et de décharge max.

Il est possible de configurer des puissances de charge/de décharge max. en même temps.


Définir une plage de charge

Il est possible de définir une plage de charge à l'aide de seuils min. et max. Dans ce cas, aucune décharge de la batterie n'est possible.


Définir une plage de décharge

Il est possible de définir une plage de décharge à l'aide de seuils min. et max. Dans ce cas, aucune charge de la batterie n'est possible.

Configurer une charge définie

Il est possible de configurer une puissance de charge définie, en réglant les seuils min. et max. correspondants sur les mêmes valeurs.

Configurer une décharge définie

Il est possible de configurer une puissance de décharge définie, en réglant les seuils min. et max. correspondants sur les mêmes valeurs.

Cas d'application possibles

- Tarifs d'électricité en fonction de l'heure
- Réservation de la batterie pour la limitation de puissance spécifique au marché
- Réservation des capacités de stockage en fonction de l'heure en cas d'alimentation en courant de secours

Réduction de puissance photovoltaïque

Les règles du menu **Gestion de la batterie** permettent une utilisation optimale de l'énergie produite. Dans certains cas, il est possible que la puissance photovoltaïque ne soit pas entièrement utilisée en raison de la commande de batterie en fonction de l'heure.

Exemple	
Onduleur Fronius (puissance de sortie max.)	6 000 W
Décharge définie de la batterie	6 000 W
Puissance photovoltaïque	1 000 W

Dans ce cas, l'onduleur devrait réduire la puissance photovoltaïque à 0 W, car la puissance de sortie de l'onduleur est de 6 000 W max. et qu'il est déjà exploité par la décharge de la batterie.

Comme il n'est pas judicieux de perdre de la puissance photovoltaïque, la limitation de puissance de gestion de la batterie est automatiquement ajustée de ma-

nière à ce qu'aucune puissance photovoltaïque ne soit perdue. Dans l'exemple cidessus, cela signifie que la batterie ne sera déchargée que de 5 000 W, afin que la puissance photovoltaïque de 1 000 W puisse être utilisée.

Gestion de la charge

Priorités

Si d'autres composants (p. ex. batterie, Fronius Ohmpilot) sont disponibles dans le système, des priorités peuvent être réglées ici. Les appareils dont la priorité est la plus élevée sont amorcés en premier, puis les autres appareils, si de l'énergie excédentaire est disponible.

IMPORTANT!

Lorsqu'un Fronius Wattpilot se trouve dans l'installation photovoltaïque, il est considéré comme un consommateur. La priorité pour la gestion de la charge du Wattpilot dans doit être configurée dans l'application Fronius Solar.wattpilot.

« Règles »

Jusqu'à 4 règles de gestion de la charge différentes peuvent être définies. Lorsque les valeurs seuil sont les mêmes, les règles sont activées dans l'ordre. Lors de la désactivation, c'est l'inverse, l'ES activée en dernier est désactivée en premier. Si les seuils sont différents, l'ES dont le seuil est le plus bas est activée en premier, puis celle avec le deuxième seuil le moins élevé, etc.

Les ES commandées via la puissance produite sont toujours privilégiées par rapport à la batterie et au Fronius Ohmpilot. Cela signifie qu'une ES peut s'activer et provoquer l'arrêt de la charge de la batterie ou l'arrêt de l'excitation du Fronius Ohmpilot.

IMPORTANT!

Une ES est activée/désactivée seulement après 60 secondes.

Charge

- La commande est off (désactivée).
- La commande s'effectue par le biais de la Puissance produite.
- La commande s'effectue par **Excédent de puissance** (avec limites d'injection). Cette option peut uniquement être sélectionnée lorsqu'un compteur est raccordé. La commande s'effectue par le biais de la puissance effectivement injectée dans le réseau.

Valeurs seuils

- Marche: pour la saisie d'une limite de puissance effective à partir de laquelle la sortie est activée.
- **Arrêt** : pour la saisie d'une limite de puissance effective à partir de laquelle la sortie est désactivée.

Durées de service

- Champ pour l'activation de la Durée de service minimale par enclenchement, activation de la durée de service minimale de la sortie par enclenchement.
- Champ pour l'activation de la **Durée de service maximale par jour**.
- Champ pour l'activation de la Durée de service maximale de la sortie par jour (plusieurs enclenchements sont pris en compte).

Optimisation de l'autoconsommation

Optimisation de l'autoconsommation

Régler le mode de service sur **Manuel** ou **Automatique**. L'onduleur régule toujours sur la « **valeur cible au point d'injection** » réglée. En mode de service **Automatique** (réglage usine), la valeur du point d'injection est réglée sur 0 W (autoconsommation max.).

La **valeur cible au point d'injection** s'applique également lorsqu'une autre source alimente ce point de comptage. Dans ce cas, il faut toutefois que

- le Fronius Smart Meter soit installé et configuré au niveau du point d'injection ;
- la fonction Autoriser la charge de batterie à partir d'autres générateurs sur le réseau domestique soit activée dans le menu Composants > Batterie.

Valeur cible au point d'injection

Si Manuel a été sélectionné sous Optimisation de l'autoconsommation, régler le Mode de service (Prélèvement/Injection) et la Valeur cible au point d'injection.

IMPORTANT!

L'optimisation de l'autoconsommation a une priorité plus basse que la Gestion de la batterie.

Système

Généralités

- Saisir le nom de l'installation dans le champ de saisie **Nom de l'installation** (30 caractères max.).
- Dans la liste déroulante, sélectionner Fuseau horaire de la région et le fuseau horaire du site. La date et l'heure sont appliquées en fonction du fuseau horaire saisi.
- 2 Cliquer sur le bouton Enregistrer.
- ✓ Le nom de l'installation, le fuseau horaire de la région et le fuseau horaire du site sont enregistrés.

Mise à jour

Toutes les mises à jour disponibles sont répertoriées sur la page du produit ainsi que dans l'espace « Recherche de téléchargements Fronius » sur www.fronius.com .

Mise à jour

- Glisser le fichier du micrologiciel dans le champ **Déposer le fichier ici** ou le sélectionner en cliquant sur **Sélectionner le fichier**
- ✓ La mise à jour démarre.

Assistant de mise en service

L'assistant de mise en service guidée peut être appelé ici.

Rétablir les réglages d'usine

Tous les paramètres

Toutes les données de configuration sont réinitialisées, à l'exception du setup pays. Les modifications du setup pays ne peuvent être effectuées que par du personnel autorisé.

Tous les paramètres hors réseau

Toutes les données de configuration sont réinitialisées, à l'exception du setup pays et des paramètres du réseau. Les modifications du setup pays ne peuvent être effectuées que par du personnel autorisé.

Journal des événements

Événements actuels

Tous les événements actuels des composants périphériques connectés sont affichés ici.

IMPORTANT!

Selon le type d'événement, ces derniers doivent être confirmés par le bouton « Cocher » pour pouvoir être traités ultérieurement.

Historique

Tous les événements des composants périphériques connectés qui ne sont plus présents sont affichés ici.

Informations

Dans ce menu toutes les informations sur le système et les paramètres actuels sont affichées et peuvent être téléchargées.

Gestionnaire de licences

Le fichier de licence contient les données de performance et l'étendue des fonctions de l'onduleur. Lors du remplacement de l'onduleur, de l'étage de puissance ou de la zone de communication de données, le fichier de licence doit également être remplacé.

Licence - en ligne (recommandé)

Une connexion Internet et une configuration complète du site Fronius Solar.web sont nécessaires.

- Achever les travaux d'installation (voir le chapitre Fermer la zone de raccordement/le couvercle du boîtier de l'onduleur et le mettre en service à la page 83).
- Se connecter à l'interface utilisateur de l'onduleur.
- Indiquer le numéro de série et le code de vérification (V.Code) de l'appareil défectueux et de l'appareil de rechange. Le numéro de série et le V.Code se trouvent sur la plaque signalétique de l'onduleur (voir le chapitre Informations sur l'appareil à la page 45).
- Cliquer sur le bouton **Démarrer l'attribution de licence en ligne**.
- Passer les menus Conditions d'utilisation et Paramétrages réseau en cliquant sur **Suivant**.
- ✓ L'activation de la licence est lancée.

Licences - Hors ligne

Aucune connexion Internet ne doit exister pour cela. Pour les licences hors ligne avec une connexion Internet établie, le fichier de licence est automatiquement téléchargé sur l'onduleur. Par conséquent, lors du téléchargement du fichier de licence, l'erreur suivante se produit : « La licence a déjà été installée et l'assistant peut être fermé ».

- Achever les travaux d'installation (voir le chapitre Fermer la zone de raccordement/le couvercle du boîtier de l'onduleur et le mettre en service à la page 83).
- Se connecter à l'interface utilisateur de l'onduleur.
- Indiquer le numéro de série et le code de vérification (V.Code) de l'appareil défectueux et de l'appareil de rechange. Le numéro de série et le V.Code se trouvent sur la plaque signalétique de l'onduleur (voir le chapitre Informations sur l'appareil à la page 45).
- 4 Cliquer sur le bouton **Démarrer l'attribution de licence hors ligne**.
- Télécharger le fichier de service sur le terminal en cliquant sur le bouton **Télécharger le fichier de service**.
- 6 Consulter le site Internet licensemanager.solarweb.com et se connecter avec le nom d'utilisateur et le mot de passe.
- Faire glisser le fichier de service dans le champ Faire glisser le fichier de service ou Cliquer pour le télécharger ou le télécharger.
- Télécharger le fichier de licence nouvellement créé sur le terminal via le bouton **Télécharger le fichier de licence**.
- 9 Se rendre sur l'interface utilisateur de l'onduleur et glisser le fichier de licence dans le champ **Déposer le fichier de licence ici** ou le sélectionner en cliquant sur **Sélectionner le fichier de licence**.
- ✓ L'activation de la licence est lancée.

Assistance

Activer l'utilisateur de support

- Cliquer sur le bouton Activer le compte utilisateur de support.
- ✓ L'utilisateur de support est activé.

IMPORTANT!

L'utilisateur de support permet uniquement au support technique Fronius d'effectuer des réglages sur l'onduleur via une connexion sécurisée. Le bouton **Désactiver l'accès de l'utilisateur de support** permet de désactiver l'accès.

Créer une info de support (pour le support Fronius)

- Cliquer sur le bouton Créer une info de support.
- Le fichier sdp.cry est téléchargé automatiquement. Pour un téléchargement manuel, cliquer sur le bouton **Téléchargement info de support**.
- ✓ Le fichier sdp.cry est enregistré dans les téléchargements.

Activer la télémaintenance

- Cliquer sur le bouton Activer la télémaintenance.
- ✓ L'accès à la télémaintenance pour le support Fronius est activé.

IMPORTANT!

L'accès à la télémaintenance permet exclusivement au Support Technique Fronius d'accéder à l'onduleur via une connexion sécurisée : Les données de diagnostic sont transmises et utilisées pour traiter le problème. N'activer l'accès à la télémaintenance qu'à la demande du support Fronius.

Communication

Réseau

Adresses de serveurs pour le transfert de données

Si un pare-feu est utilisé pour les connexions sortantes, les protocoles, adresses de serveurs et ports suivants doivent être autorisés pour réussir le transfert de données :

- Tcp fronius-se-iot.azure-devices.net:8883
- Tcp fronius-se-iot-telemetry.azure-devices.net:8883
- Tcp fronius-se-iot-telemetry.azure-devices.net:443
- Udp sera-gen24.fronius.com:1194 (213.33.117.120:1194)
- Tcp cure-se.fronius.com:443
- Tcp firmware-download.fronius.com:443
- Tcp froniusseiot.blob.core.windows.net:443
- Tcp provisioning.solarweb.com:443
- Upd/Tcp 0.time.fronius.com:123

En cas d'utilisation de produits FRITZ!Box, l'accès à Internet doit être configuré de manière illimitée et sans restriction. Le DHCP Lease Time (validité) ne doit pas être fixé à 0 (= infini).

LAN:

Établir une connexion :

- **1** Entrer le nom d'hôte.
- Sélectionner le type de connexion automatique ou statique.
- Pour le type de connexion **statique** entrer l'adresse IP, le masque de sousréseau, le DNS et la passerelle.
- Cliquer sur le bouton Connexion.
- ✓ La connexion est établie.

Après la connexion, il convient de vérifier l'état de la connexion (voir le chapitre **Services Internet** à la page **112**).

WLAN:

Établir une connexion via WPS:

- □ L'Access Point de l'onduleur doit être actif. Celui-ci se déclenche par effleurement du [®] capteur → la LED de communication clignote en bleu.
- Établir la connexion à l'onduleur dans les paramètres réseau (l'onduleur est affiché avec le nom « FRONIUS_ » et le numéro de série de l'appareil).
- [2] Saisir et confirmer le mot de passe de la plaque signalétique.

IMPORTANT!

Pour la saisie du mot de passe sous Windows 10, le lien Se connecter en utilisant une clé de sécurité réseau à la place doit d'abord être activé afin de pouvoir se connecter avec le mot de passe.

Saisir l'adresse IP 192.168.250.181 dans la barre d'adresse du navigateur et confirmer.

- Cliquer sur le bouton **Activer** dans la zone de menu **Communication** > **Réseau** > **WLAN** > **WPS**.
- 5 Activer le WPS sur le routeur WLAN (voir documentation du routeur WLAN).
- 6 Cliquer sur le bouton **Démarrer**. La connexion est automatiquement établie.
- Se connecter sur l'interface utilisateur de l'onduleur.
- 8 Vérifier les détails du réseau et la connexion à Fronius Solar.web.

Après la connexion, il convient de vérifier l'état de la connexion (voir le chapitre **Services Internet** à la page **112**).

Sélectionner et connecter le réseau WLAN:

Les réseaux trouvés sont affichés dans la liste. En appuyant sur le bouton Actualiser, \circlearrowleft une nouvelle recherche des réseaux WLAN disponibles s'exécute. Le champ de saisie **Rechercher un réseau** permet de restreindre davantage la liste de sélection.

- Sélectionner le réseau dans la liste.
- Sélectionner le type de connexion automatique ou statique.
- Pour le type de connexion **automatique** entrer le mot de passe WLAN et le nom d'hôte.
- Pour le type de connexion **statique** entrer l'adresse IP, le masque de sousréseau, le DNS et la passerelle.
- 5 Cliquer sur le bouton Connexion.
- ✓ La connexion est établie.

Après la connexion, il convient de vérifier l'état de la connexion (voir le chapitre **Services Internet** à la page **112**).

Access Point:

L'onduleur sert d'Access Point. Un PC ou un appareil intelligent se connecte directement à l'onduleur. Aucune connexion à Internet n'est possible. Dans ce menu, il est possible d'attribuer un nom de réseau (SSID) et une clé de réseau (PSK)

Il est possible d'exploiter simultanément une connexion via WLAN et via Access Point.

Modbus

L'onduleur communique via Modbus avec les composants périphériques (par ex. Fronius Smart Meter) et d'autres onduleurs. L'appareil primaire (client Modbus) envoie des ordres de commande à l'appareil secondaire (serveur Modbus). Les ordres de commande sont exécutés par l'appareil secondaire.

Modbus 0 (Mo) RTU / Modbus 1 (M1) RTU

Lorsque l'une des deux interfaces Modbus RTU est réglée sur **Serveur Modbus**, les champs de saisie suivants sont disponibles :

Taux de bauds

Le taux de bauds influence la vitesse de transmission entre les différents composants connectés au système. Lors de la sélection du taux de bauds, s'assurer que les pages d'envoi et de réception sont les mêmes.

Parité

Le bit de parité peut être utilisé pour vérifier la parité. Cela permet de détecter les erreurs de transmission. Un bit de parité permet de fixer un certain nombre de bits. La valeur (0 ou 1) du bit de parité doit être calculée sur l'émetteur et vérifiée sur le récepteur à l'aide du même calcul. Le bit de parité peut être calculé pour une parité paire ou impaire.

SunSpec Model Type

Selon le modèle SunSpec, il existe deux réglages différents.

float: modèle onduleur SunSpec 111, 112, 113 ou 211, 212, 213. int + SF: modèle onduleur SunSpec 101, 102, 103 ou 201, 202, 203.

Adresse du compteur

La valeur saisie est le numéro d'identification (Unit ID) attribué au compteur. À retrouver sur l'interface utilisateur de l'onduleur dans le menu **Communication > Modbus**.

Réglage d'usine : 200

Adresse du compteur

La valeur saisie est le numéro d'identification

(Unit ID) attribué au compteur. À retrouver sur l'interface utilisateur de l'onduleur dans le menu **Communication > Modbus**.

Réglage usine : 1

Commander l'onduleur secondaire via Modbus TCP

Ce réglage est nécessaire pour permettre la commande des onduleurs via Modbus. Lorsque la fonction **Commander l'onduleur secondaire via Modbus TCP** est activée, les champs de saisie suivants sont disponibles :

Port Modbus

Numéro du port TCP à utiliser pour la communication par Modbus.

SunSpec Model Type

Selon le modèle SunSpec, il existe deux réglages différents.

float: modèle onduleur SunSpec 111, 112, 113 ou 211, 212, 213. int + SF: modèle onduleur SunSpec 101, 102, 103 ou 201, 202, 203.

Adresse du compteur

La valeur saisie est le numéro d'identification (Unit ID) attribué au compteur. À retrouver sur l'interface utilisateur de l'onduleur dans le menu **Communication > Modbus**.

Réglage d'usine : 200

Autoriser la commande

Si cette option est activée, la commande des onduleurs s'effectue par Modbus.

Les fonctions suivantes font partie de la commande des onduleurs :

- On/Off
- Réduction de puissance
- Objectif de facteur de puissance constant (cos phi)
- Objectif de puissance réactive constante
- Consignes de commande de la batterie avec batterie

Limiter la commande

Ici, une adresse IP peut être saisie, qui est la seule à pouvoir contrôler l'onduleur.

Commande cloud

Le fournisseur d'électricité/fournisseur d'énergie peut influencer la puissance de sortie de l'onduleur avec la **commande cloud**. La condition préalable est une connexion Internet active de l'onduleur.

Paramètres	Affichage	Description
Commande cloud	Off	La commande cloud de l'onduleur est désactivée.
	On	La commande cloud de l'onduleur est activée.

Profils	Plage de va- leurs	Description
Autoriser la commande cloud à des fins de régulation (technicien)	Désactivée/ Activée	La fonction peut être obligatoire pour le bon fonctionnement de l'installation.*
Autoriser la commande cloud pour les centrales élec- triques vir- tuelles (client)	Désactivée/ Activée	Si la fonction Autoriser la commande à distance à des fins de régulation (technicien) est activée (accès Technician requis), la fonction Autoriser la commande à distance pour les centrales électriques virtuelles est automatiquement activée et ne peut pas être désactivée.*

* Commande cloud

Une centrale électrique virtuelle est une combinaison de plusieurs exploitants. Cette centrale électrique virtuelle peut être contrôlée par Internet via la commande cloud. Pour ce faire, une connexion Internet active de l'onduleur est nécessaire. Les données de l'installation sont transmises.

Solar API

Le **Solar API** est une interface JSON ouverte basée sur IP. Lorsqu'il est activé, les appareils IdO du réseau local peuvent accéder aux informations de l'onduleur sans authentification. Pour des raisons de sécurité, l'interface est désactivée de série et doit être activée si elle est nécessaire pour une application tierce (par ex. chargeur de batterie de véhicule électrique, solutions Smart Home) ou le Fronius Wattpilot.

Pour la surveillance, Fronius recommande l'utilisation de Fronius Solar.web, qui offre un accès sécurisé aux informations concernant le statut et la production de l'onduleur.

Lors de la mise à jour du logiciel vers la version 1.14.x, le réglage du Solar API est appliqué. Pour les systèmes avec une version inférieure à 1.14.x, le Solar API est activé, pour les versions supérieures, il est désactivé mais peut être activé ou désactivé dans le menu.

Activer le Fronius Solar API

Dans l'interface utilisateur de l'onduleur, activer la fonction Communication via Fronius Solar API dans le menu Communication > Solar API.

Fronius Solar.web

Dans ce menu, il est possible d'accepter ou de refuser le traitement technique nécessaire des données.

En outre, la transmission des données d'analyse et l'accès à distance via Solar.web peuvent être activés ou désactivés.

Services Internet

Ce menu affiche des informations sur les connexions et l'état actuel des connexions. En cas de problème de connexion, une brève description de l'erreur est visible.

Exigences en matière de sécurité et de réseau

Setup pays

AVERTISSEMENT!

Danger dû à des analyses d'erreurs et à des travaux de remise en état interdits. Cela peut entraîner des dommages corporels et matériels graves.

Les analyses d'erreurs et les travaux de remise en état sur l'installation photovoltaïque doivent être effectués exclusivement par des installateurs/techniciens de service d'entreprises spécialisées agréées, conformément aux normes et directives nationales.

REMARQUE!

Risque dû à un accès non autorisé.

Des paramètres mal réglés peuvent avoir une influence négative sur le réseau public et/ou sur le mode d'injection dans le réseau de l'onduleur, et entraîner une perte de conformité à la norme.

- ► Les paramètres ne peuvent être réglés que par des installateurs/techniciens de maintenance d'entreprises spécialisées agréées.
- Ne pas transmettre le code d'accès à des tiers et/ou à une personne non autorisée.

REMARQUE!

Risque en cas de mauvais réglage des paramètres.

Un mauvais réglage des paramètres peut avoir une influence négative sur le réseau public et/ou provoquer des dysfonctionnements et des pannes sur l'onduleur, ainsi que conduire à une perte de conformité à la norme.

- Les paramètres ne peuvent être réglés que par des installateurs/techniciens de maintenance d'entreprises spécialisées agréées.
- ► Les paramètres ne peuvent être modifiés que si l'opérateur réseau le permet ou l'exige.
- Régler les paramètres en tenant compte uniquement des normes et/ou directives nationales en vigueur ainsi que des spécifications de l'opérateur réseau.

Le menu **Setup pays** est destiné exclusivement aux installateurs/techniciens de maintenance des entreprises spécialisées agréées. Pour demander le code d'accès requis pour ce menu, voir le chapitre**Demander les codes de l'onduleur dans Solar.SOS**.

Le Setup pays sélectionné pour le pays en question contient des paramètres prédéfinis selon les normes et les exigences applicables au niveau national. Selon les conditions du réseau local et les spécifications de l'opérateur réseau, des ajustements au Setup pays sélectionné peuvent être nécessaires.

Demander les codes de l'onduleur dans Solar.SOS Le menu **Setup pays** est destiné exclusivement aux installateurs/techniciens de maintenance des entreprises spécialisées agréées. Le code d'accès de l'onduleur requis pour ce menu peut être demandé sur le portail Fronius Solar.SOS.

Demander les codes de l'onduleur dans Fronius Solar.SOS:

- Ouvrir solar-sos.fronius.com dans le navigateur
- 2 Se connecter avec le compte Fronius

- 🔞 Cliquer en haut à droite 🗳 sur le menu déroulant
- Sélectionner le point de menu Afficher les codes de l'onduleur
 - ✓ Une page de contrat apparaît sur laquelle se trouve la demande de code d'accès pour modifier les paramètres de réseau des onduleurs Fronius
- Lire et accepter les conditions d'utilisation en cochant la case Oui, j'ai lu et j'accepte les conditions d'utilisation puis en cliquant sur Confirmer et envoyer
- Ensuite, les codes peuvent être appelés dans le menu déroulant en haut à droite sous **Afficher les codes de l'onduleur**

⚠ ATTENTION!

Risque dû à un accès non autorisé.

Des paramètres mal réglés peuvent avoir une influence négative sur le réseau public et/ou sur le mode d'injection dans le réseau de l'onduleur, et entraîner une perte de conformité à la norme.

- Les paramètres ne peuvent être réglés que par des installateurs/techniciens de maintenance d'entreprises spécialisées agréées.
- Ne pas transmettre le code d'accès à des tiers et/ou à une personne non autorisée.

Limite d'injection

L'entreprise du secteur de l'électricité ou l'opérateur réseau peut définir des limites d'injection pour un onduleur (par ex. max. 70 % de kWc ou max. 5 kW). La limite d'injection tient compte de l'auto-consommation du foyer avant la réduction de la puissance d'un onduleur :

- une limite individuelle peut être réglée.
- Un Fronius Smart Meter peut être connecté à la borne de raccordement Push-in Modbus de la zone de communication de données aux connecteurs MO/M1- et MO/M1+ pour les données Modbus.

Avec l'onduleur, la puissance photovoltaïque qui ne peut pas être injectée dans le réseau public est utilisée par le Fronius Ohmpilot et n'est donc pas perdue. La limite d'injection n'est active que si la puissance d'injection est supérieure à la réduction de puissance réglée.

Limitation de puissance désactivée

L'onduleur transforme l'intégralité de la puissance photovoltaïque disponible et l'injecte dans le réseau public.

Limitation de puissance activée

Limitation de l'alimentation avec les possibilités de sélection suivantes :

- Limite de puissance totale
 - L'ensemble de l'installation photovoltaïque est limitée à un seuil d'injection fixe. La valeur de la puissance d'injection totale admissible doit être réglée.
- Limite par phase Production asymétrique
 La valeur optimale par phase est déterminée. L'onduleur régule les
 différentes phases de manière à ce que la somme des phases ne dépasse pas

la valeur définie. Ce réglage n'est nécessaire que si les normes et dispositions nationales l'exigent. La valeur de la puissance d'injection admissible par phase doit être réglée.

Cette fonction n'est pas prise en charge dans les systèmes avec un Fronius Ohmpilot et/ou une limitation de puissance dynamique de plusieurs onduleurs.

- Limite par phase - Phase la plus faible

Chaque phase est mesurée. Lorsque la limite d'injection autorisée est dépassée sur une phase, la puissance totale de l'onduleur est réduite jusqu'à ce que la valeur sur la phase concernée soit à nouveau autorisée. Ce réglage n'est nécessaire que si les normes et dispositions nationales l'exigent. La valeur de la puissance d'injection admissible par phase doit être réglée.

Puissance DC totale de l'installation

Champ de saisie pour la puissance DC totale de l'installation en Wc. Cette valeur est utilisée si la **Puissance d'injection dans le réseau max.** est spécifiée en %.

Limitation de puissance dynamique (Soft Limit)

Si cette valeur est dépassée, l'onduleur réduit la valeur réglée.

Fonction d'arrêt de la limite d'injection (Hard Limit Trip)

Si cette valeur est dépassée, l'onduleur s'arrête dans un délai de 5 secondes maximum. Cette valeur doit être supérieure à la valeur réglée pour la **Limitation de puissance dynamique (Soft Limit)**.

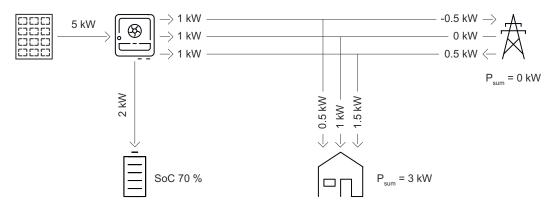
Puissance d'injection dans le réseau max.

Champ de saisie pour la **puissance d'injection dans le réseau max.** en W ou % (plage de réglage : -10 à 100 %).

Si aucun compteur n'est présent dans le système ou si un compteur tombe en panne, l'onduleur limite la puissance d'injection à la valeur réglée.

Pour la régulation dans le cas d'un Fail-Safe, activer la fonction **Réduire la puis**sance de l'onduleur à 0 % si la connexion au Smart Meter est interrompue.

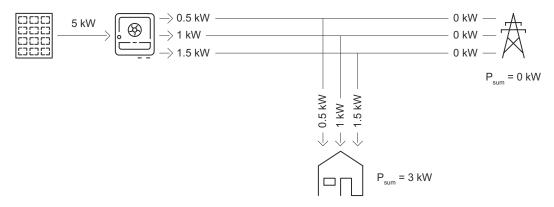
L'utilisation du WLAN pour la communication entre le Smart Meter et l'onduleur n'est pas recommandée pour la fonction Fail-Safe. Même des interruptions de connexion de courte durée peuvent entraîner la mise hors tension de l'onduleur. Ce problème est particulièrement fréquent lorsque l'intensité du signal Wi-Fi est faible, que la connexion Wi-Fi est lente ou surchargée et que le routeur sélectionne automatiquement les canaux.


Limiter plusieurs onduleurs (Soft Limit uniquement)

Contrôle de la limitation d'injection dynamique pour plusieurs onduleurs, pour plus de détails sur la configuration, voir le chapitre Limite d'injection dynamique avec plusieurs onduleurs à la page 117.

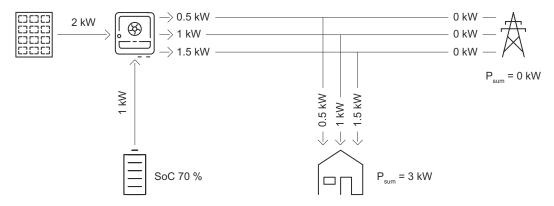
Limitation d'injection -Exemples

Limite de puissance totale


(limitation d'alimentation 0 kW avec batterie)

Explication

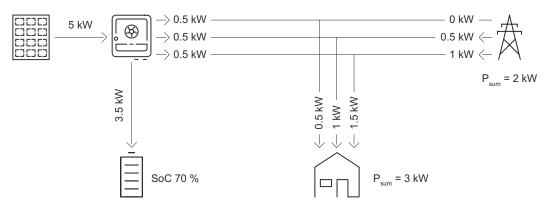
Au niveau du point d'injection dans le réseau, aucune puissance (0 kW) ne peut être injectée dans le réseau public. La demande de charge dans le réseau domestique (3 kW) est alimentée par la puissance produite de l'onduleur. La production excédentaire (2 kW) est stockée dans la batterie.


Limite par phase - Production asymétrique (limitation d'alimentation 0 kW par phase) - asymétrique

Explication

La demande de charge dans le réseau domestique est déterminée et alimentée par phase.

Limite par phase - Production asymétrique (limitation d'alimentation 0 kW par phase avec batterie) - asymétrique



Explication

La demande de charge dans le réseau domestique est déterminée et alimentée

par phase. La puissance supplémentaire nécessaire (1 kW) est fournie par la batterie.

Limite par phase - Phase la plus faible (limitation d'alimentation 0 kW par phase avec batterie) - symétrique

Explication

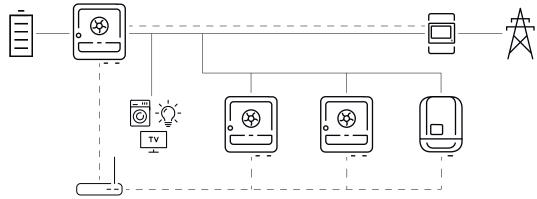
La phase la plus faible de la demande de charge dans le réseau domestique est déterminée (phase 1 = 0,5 kW). Le résultat de la phase la plus faible (0,5 kW) est appliqué à toutes les phases. La phase 1 (0,5 kW) peut être alimentée. La phase 2 (1 kW) et la phase 3 (1,5 kW) ne peuvent pas être alimentées, la puissance du réseau public est nécessaire (phase 2 = 0,5 kW, phase 3 = 1 kW). La production excédentaire (3,5 kW) est stockée dans la batterie.

Limite d'injection dynamique avec plusieurs onduleurs

IMPORTANT!

Pour tout réglage dans ce point de menu, sélectionner l'utilisateur **Technicien** puis saisir et confirmer le mot de passe de l'utilisateur **Technicien**. Les réglages dans ce point de menu doivent être effectués exclusivement par du personnel qualifié et formé!

Afin de gérer de manière centralisée les limites d'injection des entreprises du secteur de l'électricité ou des opérateurs réseau, l'onduleur peut commander en tant qu'appareil primaire la limite d'injection dynamique pour d'autres onduleurs Fronius (appareils secondaires). Cette commande se réfère à la limite d'injection **Soft Limit** (voir **Limite d'injection**). Les conditions suivantes doivent être remplies :


- La limitation de puissance et la fonction Limiter plusieurs onduleurs (uniquement Soft Limit) sont activées et configurées sur l'interface utilisateur de l'appareil primaire.
- L'appareil primaire et l'appareil/les appareils secondaire(s) sont physiquement connectés au même routeur réseau via LAN.
- Pour tous les appareils secondaires, la **Commande d'onduleur via Modbus** est activée et configurée.
- Le Fronius Smart Meter est configuré comme compteur primaire et connecté à l'appareil primaire.

IMPORTANT!

Seul un compteur primaire est nécessaire pour l'appareil primaire.

IMPORTANT!

Si un onduleur GEN24 est connecté à une batterie, il doit être utilisé comme appareil primaire pour la limite d'injection dynamique.

Exemple de schéma de connexion de la limite d'injection dynamique avec plusieurs onduleurs

La limitation d'injection dynamique est disponible avec les combinaisons d'appareils suivantes :

Appareil primaire	Appareils secondaires
Fronius GEN24	Fronius GEN24, Fronius Verto, Fronius Tauro, Fronius SnapINverter avec Fronius Datamanager 2.0*
Fronius Verto	Fronius GEN24, Fronius Verto, Fronius Tauro, Fronius SnapINverter avec Fronius Datamanager 2.0*
Fronius Tauro	Fronius GEN24, Fronius Verto, Fronius Tauro, Fronius SnapINverter avec Fronius Datamanager 2.0*

^{*} Jusqu'à 4 Fronius SnapINverter supplémentaires peuvent être connectés à chaque Fronius SnapINverter avec Fronius Datamanager 2.0.

Compteur primaire

Le Fronius Smart Meter fonctionne comme le seul compteur primaire et est directement connecté à l'appareil primaire. Le Smart Meter mesure la puissance de sortie totale de tous les onduleurs sur le réseau et transmet ces informations à l'appareil primaire via Modbus.

Appareil primaire

La configuration de la limite d'injection s'effectue sur l'interface utilisateur de l'onduleur :

- Activer la fonction Limitation de puissance et sélectionner Limite de puissance totale dans le menu Exigences en matière de sécurité et de réseau > Limite d'injection.
- Effectuer les réglages spécifiques à chaque pays.
- Activer la fonction Limiter plusieurs onduleurs (uniquement Soft Limit) dans le menu Exigences en matière de sécurité et de réseau > Limite d'injection.

L'appareil primaire recherche automatiquement les appareils secondaires disponibles dans le réseau. Une liste des onduleurs trouvés s'affiche. Cliquer le bouton « Actualiser » \mathcal{O} pour relancer la recherche.

Pour tous les appareils secondaires soumis à une limite d'injection, activer **Utiliser un onduleur**. Cliquer sur **Utiliser tous les onduleurs** pour activer la fonction pour tous les appareils secondaires.

L'état des onduleurs répertoriés est affiché comme suit :

- **Inactif** : l'appareil secondaire n'est pas configuré pour la régulation de puissance.
- Déconnecté: appareil secondaire configuré, connexion réseau impossible.
- **Connecté** : appareil secondaire configuré et accessible via le réseau de l'appareil primaire.
- Dans le menu Exigences en matière de sécurité et de réseau > Gestion de la puissance E/S, définir les priorités des commandes comme suit :
 - 1. Gestion de la puissance E/S
 - 2. Commande Modbus
 - 3. Limite d'injection

Ajouter manuellement un onduleur

- Sélectionner le menu Onduleurs supplémentaires.
- Saisir le nom, le nom d'hôte ou l'adresse IP ainsi que l'adresse Modbus de l'appareil secondaire.
- 3 Cliquer sur Ajouter un onduleur.

Appareil secondaire

Un appareil secondaire prend en charge la limitation de l'alimentation par l'appareil primaire. Aucune donnée n'est envoyée à l'appareil primaire pour la demande de limitation d'injection. Les configurations suivantes doivent être réglées pour la limitation de puissance :

Interface utilisateur de l'appareil secondaire GEN24 / Verto / Tauro

- Sélectionner l'utilisateur **Technicien** puis saisir le mot de passe de l'utilisateur **Technicien**.
- Dans le menu Modbus, activer la fonction Contrôler l'onduleur secondaire via Modbus TCP.
- Dans le menu Exigences en matière de sécurité et de réseau > Gestion de la puissance E/S, définir les priorités des commandes pour un scénario Fail-Safe comme suit :
 - 1. Gestion de la puissance E/S
 - 2. Commande Modbus
 - 3. Limite d'injection
- Dans le menu Exigences en matière de sécurité et de réseau, sélectionner Limite d'injection et effectuer les réglages suivants :
 - Activer la fonction Limitation de puissance
 - Sélectionner Limite de puissance totale et indiquer la valeur totale de la puissance de l'installation CC en W
 - Activer Limite d'injection dynamique (Soft Limit) et saisir une valeur de O W pour la Puissance d'injection dans le réseau max.
 - Activer la fonction Réduire la puissance de l'onduleur à 0 % si la connexion au Smart Meter est interrompue

Interface utilisateur de l'appareil secondaire Fronius Datamanager 2.0

- Sélectionner l'utilisateur **Admin** et saisir le mot de passe de l'utilisateur **Admin**.
- Dans le menu Paramètres Modbus, activer les fonctions Sortie de données via Modbus et Commande d'onduleur via Modbus.

- Dans le menu Éditeur de fournisseur d'électricité > Priorités des commandes, définir les priorités des commandes pour un scénario Fail-Safe comme suit :
 - 1. Commande E/S
 - 2. Commande via Modbus
 - 3. Réduction dynamique de la puissance
- Sélectionner le menu Éditeur de fournisseur d'électricité > Réduction dynamique de la puissance
- Sous le point de menu **Limite d'injection**, activer la fonction **Limite pour toute l'installation** et effectuer les réglages suivants :
 - Indiquer la valeur totale de la puissance de l'installation CC en W
 - Activer Limite d'injection dynamique (Soft Limit) et saisir une valeur de O W pour la Puissance d'injection dans le réseau max.
 - Activer la fonction Réduire la puissance de l'onduleur à 0 % si la connexion au Smart Meter est interrompue
- ✓ La limite d'injection dynamique avec plusieurs onduleurs est configurée.

IMPORTANT!

L'appareil secondaire arrête automatiquement l'injection dans le réseau en cas de panne de communication si la commande Modbus n'envoie pas de signal à l'onduleur.

Gestion de la puissance E/S

Généralités

Dans ce point de menu, les paramètres pertinents pour un fournisseur d'électricité sont appliqués. Une limitation de la puissance effective en % et/ou une limitation du facteur de puissance peuvent être fixées.

IMPORTANT!

Pour tout réglage dans ce point de menu, sélectionner l'utilisateur **Technicien** puis saisir et confirmer le mot de passe de l'utilisateur **Technicien**. Les réglages dans ce point de menu doivent être effectués exclusivement par du personnel qualifié et formé!

Échantillon d'entrée (affectation des différentes E/S)

1 clic = blanc (contact ouvert)

2 clics = bleu (contact fermé)

3 clics = gris (non utilisé)

Facteur de puissance (cos φ)

- Capacitif
- Inductif

Retour du fournisseur d'électricité

Lorsque la règle est activée, la sortie **Retour du fournisseur d'électricité** doit être configurée (broche 1 recommandé) (par ex. pour le fonctionnement d'un dispositif de signalisation).

Pour l'**Importation** et l'**Exportation**, le format de données *.fpc est pris en charge.

Priorités des commandes

La limitation d'injection et la commande via Modbus pour définir les priorités des commandes pour la gestion de la puissance E/S (DRM ou le récepteur de télécommande centralisée).

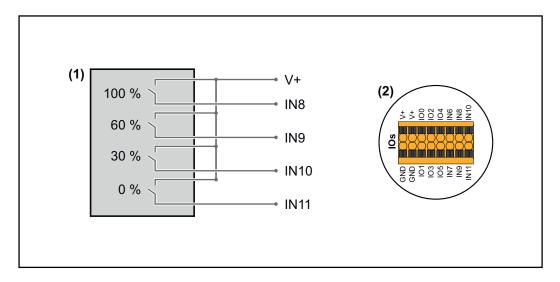
1 = priorité maximale, 3 = priorité minimale

Les priorités locales de la gestion de la puissance des E/S, de la limitation de l'injection et du Modbus sont remplacées par des ordres de commande cloud (à des fins de réglementation et de centrales virtuelles) - voir **Commande cloud** à la page **111** - ainsi que par une alimentation en courant de secours.

Les priorités de commande sont distinguées en interne en fonction de la **limitation de puissance** et de **l'arrêt de l'onduleur**. L'arrêt de l'onduleur est toujours prioritaire par rapport à la limitation de puissance. Un ordre d'arrêt de l'onduleur est toujours exécuté, quelle que soit la priorité.

Limitation de puissance

- Gestion de la puissance E/S (DRM/signal de récepteur de télécommande centralisée) sur ordre
- Limitation de l'alimentation (Soft Limit) toujours active
- Modbus (limite de production) sur ordre

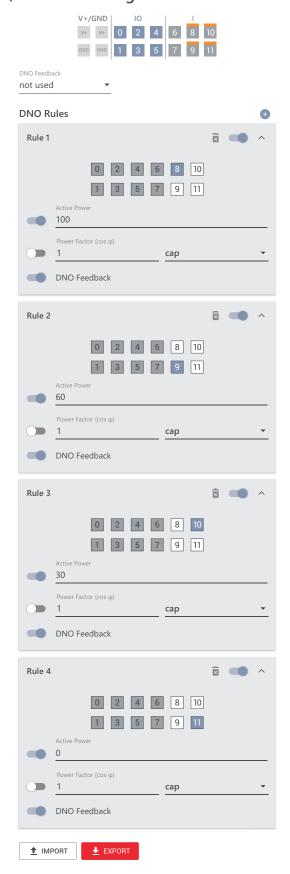

Arrêt de l'onduleur

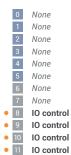
- Gestion de la puissance E/S avec limitation d'alimentation = 0 % (DRM/signal de récepteur de télécommande centralisée) sur ordre
- Limite d'injection (Hard Limit)
- Modbus (ordre d'arrêt) sur ordre

Schéma de connexions – 4 relais

Le récepteur de signal pour télécommande centralisée et les bornes de raccordement E/S de l'onduleur peuvent être connectés l'un à l'autre selon le schéma de connexions.

Pour les distances supérieures à 10 m entre l'onduleur et le récepteur de signal pour télécommande centralisée, il est recommandé d'utiliser au moins un câble CAT 5 STP et le blindage doit être connecté à une extrémité à la borne de raccordement Push-in de la zone de communication de données (SHIELD).


- (1) Récepteur de signal pour télécommande centralisée avec 4 relais, pour limitation de la puissance effective.
- (2) E/S de la zone de communication de données.


Utiliser un fichier préconfiguré pour le fonctionnement à 4 relais :

- Télécharger le fichier (.fpc) sous Fonctionnement à 4 relais sur le terminal.
- Télécharger le fichier (.fpc) au menu **Gestion de la puissance E/S** via le bouton **Import**.
- Cliquer sur le bouton **Enregistrer**.
- ✓ Les réglages pour le fonctionnement à 4 relais sont enregistrés.

Paramètres Gestion de puissance E/S – 4 relais

I/O Power Management

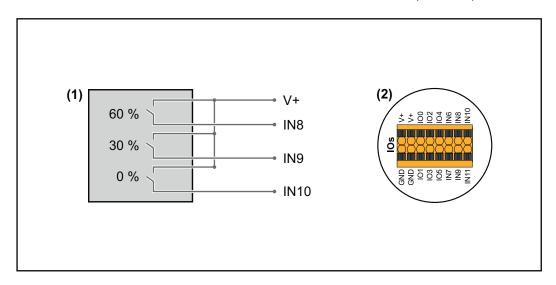
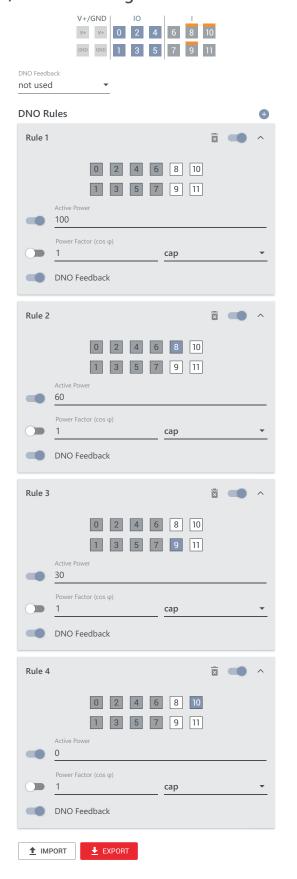


Schéma de connexions – 3 relais

Le récepteur de signal pour télécommande centralisée et les bornes de raccordement E/S de l'onduleur peuvent être connectés l'un à l'autre selon le schéma de connexions.

Pour les distances supérieures à 10 m entre l'onduleur et le récepteur de signal pour télécommande centralisée, il est recommandé d'utiliser au moins un câble CAT 5 STP et le blindage doit être connecté à une extrémité à la borne de raccordement Push-in de la zone de communication de données (SHIELD).


- (1) Récepteur de signal pour télécommande centralisée avec 3 relais, pour limitation de la puissance effective.
- (2) E/S de la zone de communication de données.


Utiliser un fichier préconfiguré pour le fonctionnement à 3 relais :

- Télécharger le fichier (.fpc) sous **Fonctionnement à 3 relais** sur le terminal.
- Télécharger le fichier (.fpc) au menu **Gestion de la puissance E/S** via le bouton **Import**.
- 3 Cliquer sur le bouton **Enregistrer**.
- ✓ Les réglages pour le fonctionnement à 3 relais sont enregistrés.

Paramètres Gestion de puissance E/S – 3 relais

I/O Power Management

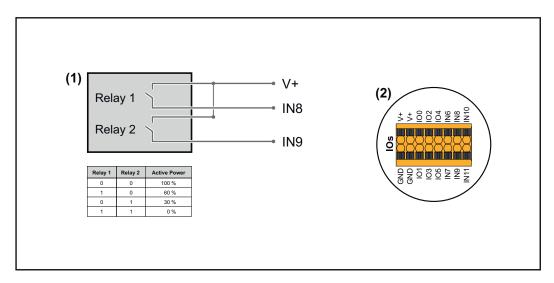
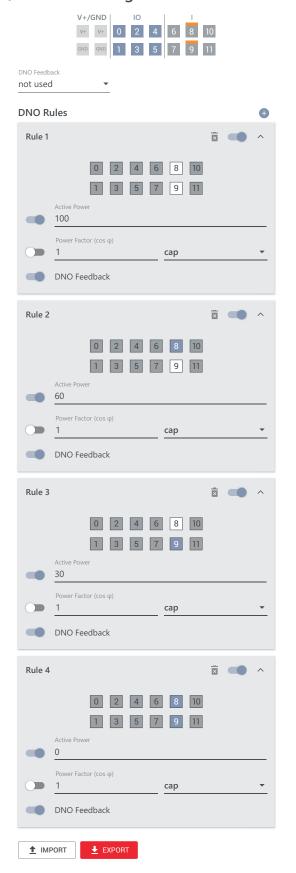


Schéma de connexions – 2 relais

Le récepteur de signal pour télécommande centralisée et les bornes de raccordement E/S de l'onduleur peuvent être connectés l'un à l'autre selon le schéma de connexions.

Pour les distances supérieures à 10 m entre l'onduleur et le récepteur de signal pour télécommande centralisée, il est recommandé d'utiliser au moins un câble CAT 5 STP et le blindage doit être connecté à une extrémité à la borne de raccordement Push-in de la zone de communication de données (SHIELD).

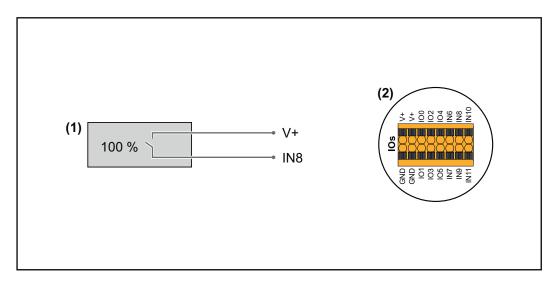

- (1) Récepteur de signal pour télécommande centralisée avec 2 relais, pour limitation de la puissance effective.
- (2) E/S de la zone de communication de données.


Utiliser un fichier préconfiguré pour le fonctionnement à 2 relais :

- Télécharger le fichier (.fpc) sous **Fonctionnement à 2 relais** sur le terminal.
- Télécharger le fichier (.fpc) au menu **Gestion de la puissance E/S** via le bouton **Import**.
- 3 Cliquer sur le bouton **Enregistrer**.
- ✓ Les réglages pour le fonctionnement à 2 relais sont enregistrés.

Paramètres Gestion de puissance E/S - 2 relais

I/O Power Management

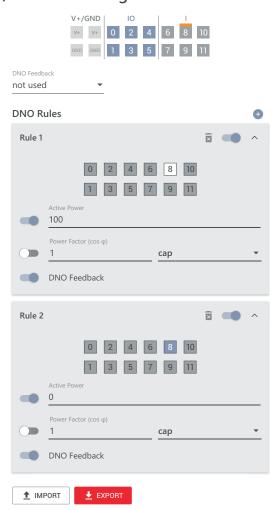

None

0 None

Schéma de connexions – 1 relais

Le récepteur de signal pour télécommande centralisée et les bornes de raccordement E/S de l'onduleur peuvent être connectés l'un à l'autre selon le schéma de connexions.

Pour les distances supérieures à 10 m entre l'onduleur et le récepteur de signal pour télécommande centralisée, il est recommandé d'utiliser au moins un câble CAT 5 STP et le blindage doit être connecté à une extrémité à la borne de raccordement Push-in de la zone de communication de données (SHIELD).


- (1) Récepteur de signal pour télécommande centralisée avec 1 relais, pour limitation de la puissance effective.
- (2) E/S de la zone de communication de données.

Utiliser un fichier préconfiguré pour le fonctionnement à 1 relais :

- Télécharger le fichier (.fpc) sous **Fonctionnement à 1 relais** sur le terminal.
- Télécharger le fichier (.fpc) au menu **Gestion de la puissance E/S** via le bouton **Import**.
- 3 Cliquer sur le bouton **Enregistrer**.
- ✓ Les réglages pour le fonctionnement à 1 relais sont enregistrés.

Paramètres Gestion de puissance E/S – 1 relais

I/O Power Management

Connecter le récepteur de télécommande centralisée à plusieurs onduleurs

L'opérateur réseau peut demander la connexion d'un ou plusieurs onduleurs à un récepteur de télécommande centralisée afin de limiter la puissance effective et/ou le facteur de puissance de l'installation photovoltaïque.

0 None

1 None

2 None

3 None4 None

5 None

6 None 7 None

• 8

9 None

10 None11 None

IO control

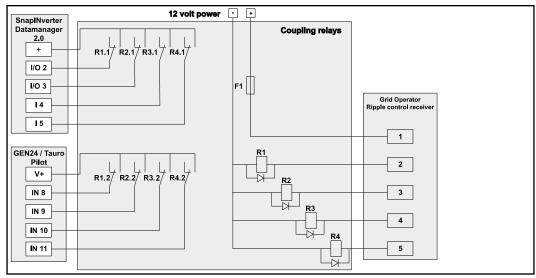


Schéma de connexion du récepteur de télécommande centralisée avec plusieurs onduleurs

Via un répartiteur (relais de couplage), les onduleurs Fronius suivants peuvent être connectés au récepteur de télécommande centralisée :

- Symo GEN24
- Primo GEN24
- Tauro
- SnapINverter (uniquement les appareils avec Fronius Datamanager 2.0)

IMPORTANT!

Sur l'interface utilisateur de chaque onduleur connecté au récepteur de télécommande centralisée, le réglage Fonctionnement à 4 relais(voir Schéma de connexions – 4 relais et Paramètres Gestion de puissance E/S – 4 relais) doit être activé.

Autotest (CEI 0-21)

Description

L'autotest peut être utilisé pour vérifier la fonction de protection requise par les normes italiennes pour la surveillance des valeurs limites de tension et de fréquence de l'onduleur lors de sa mise en service. En fonctionnement normal, l'onduleur vérifie constamment la valeur réelle de la tension et de la fréquence du réseau.

Après le démarrage de l'autotest, différents tests individuels se déroulent automatiquement les uns après les autres. Selon les conditions du réseau, la durée du test est d'environ 15 minutes.

IMPORTANT!

La mise en service de l'onduleur en Italie ne peut être effectuée qu'à l'issue d'un autotest (CEI 0-21). Si l'autotest n'a pas été effectué, le mode d'injection dans le réseau ne peut être activé. Lorsque l'autotest a été démarré, il doit être achevé avec succès. L'autotest ne peut pas être démarré en mode alimentation en courant de secours.

U max	Test de vérification de la tension maximale dans les conducteurs de phase
U min	Test de vérification de la tension minimale dans les conducteurs de phase
f max	Test de vérification de la fréquence de réseau maximale
f min	Test de vérification de la fréquence de réseau minimale
f max alt	Test de vérification d'une fréquence de réseau maximale alternative
f min alt	Test de vérification d'une fréquence de réseau minimale al- ternative
U ext min	Test de vérification des tensions extérieures minimales
U longT.	Test de vérification de la tension moyenne 10 min

Enregistrer au format PDF

- Cliquer sur le bouton Enregistrer au format PDF.
- Saisir le nom du fichier dans le champ de saisie et cliquer sur le bouton **Imprimer**.
- ✓ Le PDF est créé et s'affiche.

Remarque concernant l'autotest

Le réglage des valeurs limites a lieu dans le menu Exigences en matière de sécurité et de réseau > Setup pays > Fonctions de support du réseau.

Le menu Setup pays est destiné exclusivement aux installateurs/techniciens de

maintenance des entreprises spécialisées agréées. Le code d'accès de l'onduleur requis pour ce menu peut être demandé sur le portail Fronius Solar.SOS (voir chapitre **Demander les codes de l'onduleur dans Solar.SOS** à la page **113**).

Options

Protection contre la surtension SPD

Généralités

Une protection contre la surtension (Surge Protective Device - SPD) protège contre les surtensions temporaires et détourne les courants de choc (par ex. la foudre). Basé sur un concept global de protection contre la foudre, le SPD contribue à la protection des composants périphériques photovoltaïques. Pour plus d'informations sur le schéma de câblage de la protection contre la surtension, voir le chapitre **Protection contre la surtension SPD** à la page **194**.

Lorsque la protection contre la surtension est déclenchée, la couleur de l'indicateur passe du vert au rouge (affichage mécanique) et la LED de fonctionnement de l'onduleur s'allume en rouge (voir chapitre Fonctions des boutons et LED d'état à la page 35). Sur l'interface utilisateur de l'onduleur, dans le menu Système > Journal des événements ou dans le menu utilisateur sous Notifications tout comme sur Fronius Solar.web, le code d'erreur 1030 WSD Open s'affiche. Dans ce cas, l'onduleur doit être remis en état par une entreprise spécialisée agréée.

IMPORTANT!

L'onduleur s'éteint également si le câble de signal bipolaire de la protection contre la surtension est coupé ou endommagé.

Protection externe contre la surtension

Pour recevoir une notification en cas de déclenchement des protections externes contre la surtension, il est recommandé de raccorder les contacts de réponse en série à l'entrée WSD.

Sécurité

AVERTISSEMENT!

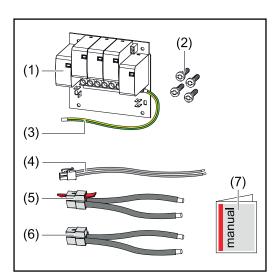
Danger dû à la tension électrique sur les parties sous tension de l'installation photovoltaïque.

Cela peut entraîner des dommages corporels et matériels graves.

- ► Isoler les pièces sous tension de l'installation photovoltaïque sur tous les pôles et tous les côtés.
- Sécuriser contre la reconnexion conformément aux réglementations nationales
- ► Attendre l'expiration de la durée de décharge (2 minutes) des condensateurs de l'onduleur.
- Vérifier l'absence de tension avec un instrument de mesure approprié.

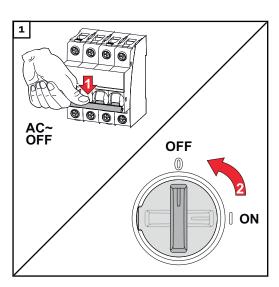
AVERTISSEMENT!

Danger en cas d'erreurs en cours d'opération.

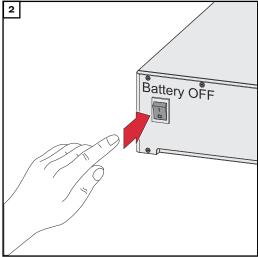

Cela peut entraîner des dommages corporels et matériels graves.

- ▶ L'installation et le raccordement d'une option ne peuvent être effectués que par du personnel de service formé par Fronius et dans le cadre des dispositions techniques.
- Respecter les consignes de sécurité.

Contenu de la livraison


La protection contre la surtension (Surge Protective Device - SPD) est disponible en option et peut être installée ultérieurement dans l'onduleur.

Caractéristiques techniques, voir le chapitre **Caractéristiques techniques** à la page **169**.



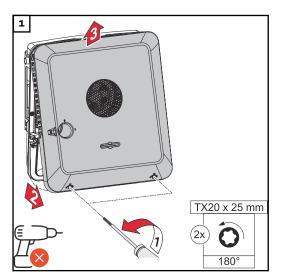
- 1. Circuit imprimé
- 2. 4 vis TX20
- 3. Conducteur de terre
- 4. Câble de signal bipolaire
- 5. Câble PV-
- 6. Câble PV+
- 7. Feuillet annexe

Mettre l'onduleur hors tension

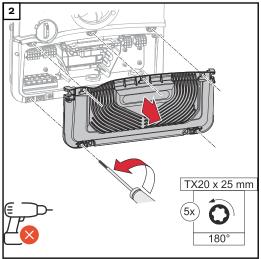
Déconnecter le système de protection automatique. Placer le sectionneur DC en position « Off ».

Débrancher les connexions des chaînes de modules solaires (+/-). Mettre la batterie connectée à l'onduleur hors tension.

Attendre l'expiration de la durée de décharge (2 minutes) des condensateurs de l'onduleur.

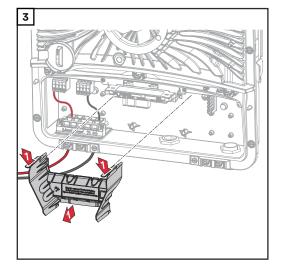

Installation

ATTENTION!

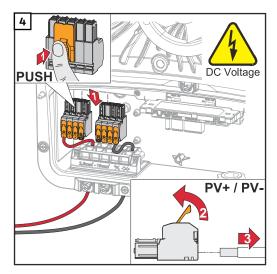

Danger dû à un conducteur de terre insuffisamment dimensionné.

Il peut en résulter des dommages sur l'onduleur en raison d'une surcharge thermique.

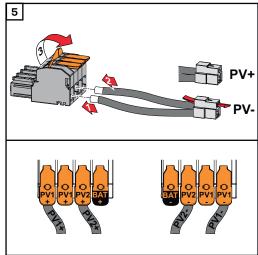
Pour le dimensionnement du conducteur de terre, les normes et directives nationales doivent être respectées.



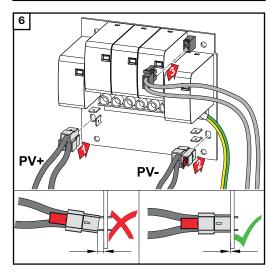
Desserrer les 2 vis situées en bas du couvercle du boîtier à l'aide d'un tournevis (TX20) et faire un tour de 180° vers la gauche. Soulever ensuite le couvercle du boîtier situé sous l'onduleur et le décrocher par le haut.



Desserrer les 5 vis du cache de la zone de raccordement à l'aide d'un tournevis (TX20) et faire un tour de 180° vers la gauche.

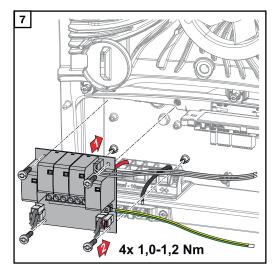

Retirer le cache de la zone de raccordement de l'appareil.

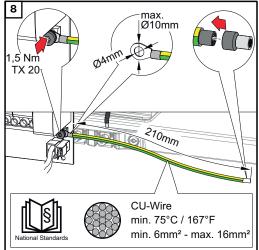
Retirer la séparation de la zone de raccordement en actionnant les crochets à encliquetage.


Retirer les bornes de raccordement DC Push-in des emplacements et les déconnecter des câbles (requis uniquement sur une installation déjà existante).

Connecter les câbles PV+/PV- fournis aux connecteurs respectifs.

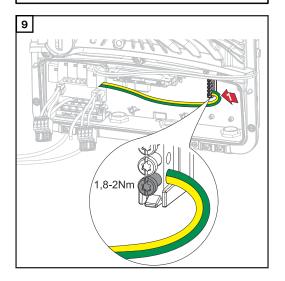
IMPORTANT!


Respecter l'étiquetage du câble lors de la connexion.


Connecter les câbles fournis aux connecteurs respectifs sur le circuit imprimé.

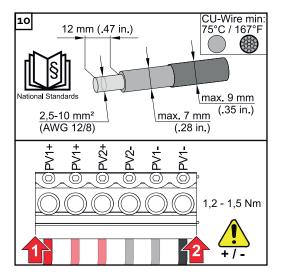
IMPORTANT!

Les connecteurs doivent être branchés jusqu'à la butée du circuit imprimé.


Insérer le circuit imprimé dans l'onduleur et le fixer avec les 4 vis (TX20) fournies et un couple de 1,0 - 1,2 Nm.

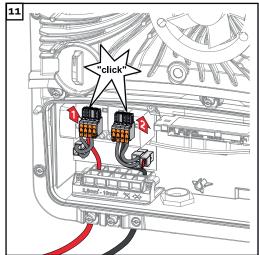
IMPORTANT!

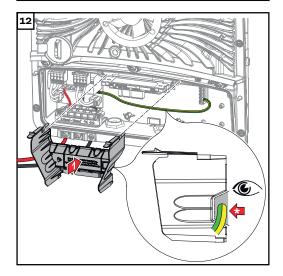
En fonction des normes et directives nationales, une section plus importante du conducteur de terre peut être requise.


Dimensionner la section de câble du conducteur de terre conformément aux normes et directives nationales et monter une cosse à œil (diamètre intérieur : 4 mm, diamètre extérieur : 10 mm max.) et une cosse terminale correspondante. Fixer le conducteur de terre au circuit imprimé avec un couple de 1,5 Nm.

Fixer le conducteur de terre à la première entrée en partant du bas de la borne d'électrode de terre avec un tournevis (TX20) et un couple de 1,8 à 2 Nm.

IMPORTANT!

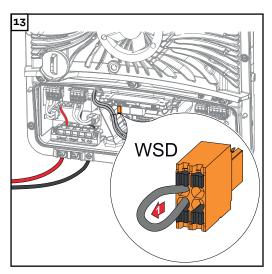

L'utilisation d'autres entrées peut rendre difficile l'insertion de la séparation de la zone de raccordement ou endommager le conducteur de terre.


Dénuder les conducteurs uniques sur 12 mm et les fixer dans l'emplacement prévu sur la borne de raccordement située sur le circuit imprimé, avec un couple de 1,2 à 1,5 Nm.

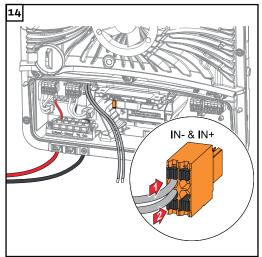
IMPORTANT!

La section du câble doit être choisie conformément aux caractéristiques de la classe de puissance de l'onduleur (voir chapitre **Câbles autorisés pour la connexion électrique** à la page **54**).

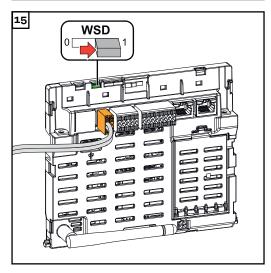
Connecter les bornes de raccordement DC Push-in jusqu'à un déclic audible dans l'emplacement correspondant.

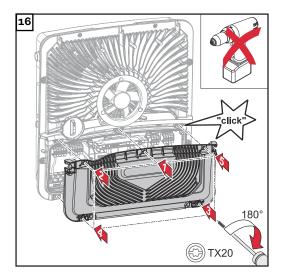


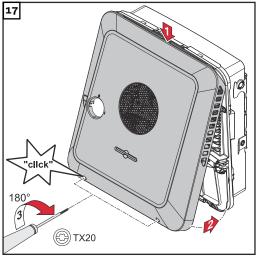
Replacer la séparation de la zone de raccordement.


*Poser le conducteur de terre dans le passage de câbles intégré.

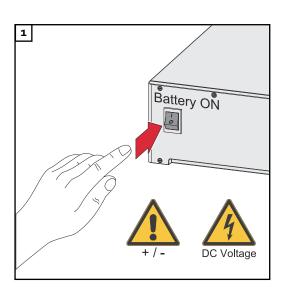
IMPORTANT!


Lors de l'insertion de la séparation de la zone de raccordement, s'assurer que le conducteur de terre n'est pas endommagé (par ex. plié, pincé, comprimé, etc.).

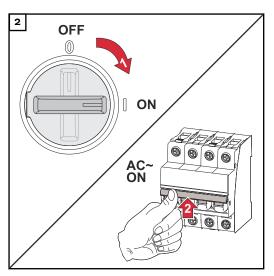

Retirer le pont installé de série à la borne de raccordement WSD Push-in.


Connecter le câble de signal sur les emplacements IN- et IN+ en tenant compte de l'étiquetage de la borne de raccordement WSD Push-in.

Vérifier si le commutateur WSD se trouve en position 1, l'ajuster si nécessaire (réglage d'usine : position 1).



Placer le cache sur la zone de raccordement. Serrer les 5 vis dans l'ordre indiqué à l'aide d'un tournevis (TX20) et faire un tour de 180° vers la droite.



Accrocher le couvercle du boîtier sur l'onduleur par le haut.
Appuyer sur la partie inférieure du couvercle du boîtier et serrer les 2 vis avec un tournevis (TX20) en effectuant un tour de 180° vers la droite.

Mettre en service l'onduleur

Connecter les chaînes de modules solaires (+/-). Mettre sous tension la batterie raccordée à l'onduleur.

Placer le sectionneur DC en position « On ». Enclencher le système de protection automatique.

DC Connector Kit GEN24

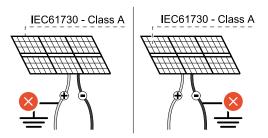
Généralités

Le kit connecteur DC GEN24 (numéro d'article : 4,240,046) permet le raccordement de chaînes de modules solaires avec un courant total supérieur à 25 A.

Généralités sur les modules solaires

Pour bien choisir les modules solaires et obtenir le meilleur rendement possible au niveau de l'onduleur, respecter les points suivants :

- En cas de rayonnement solaire constant et de baisse de la température, la tension à vide des modules solaires augmente. La tension à vide ne doit pas dépasser la tension de système max. admissible. Une tension à vide supérieure aux valeurs prescrites entraîne la destruction de l'onduleur et l'annulation de tous les droits à la garantie.
- Respecter les coefficients de température de la fiche technique des modules solaires.
- Des programmes de calcul permettent de déterminer les valeurs exactes des dimensions des modules solaires, tels que : **Fronius Solar.creator**.


IMPORTANT!

Avant de raccorder les modules solaires, vérifier que la tension réelle correspond à celle calculée à partir des caractéristiques techniques du fabricant.

IMPORTANT!

Les modules solaires branchés à l'onduleur doivent répondre à la norme CEI 61730 Classe A.

IMPORTANT!

Les chaînes de modules solaires ne doivent pas être mises à la terre.

Sécurité

AVERTISSEMENT!

Danger en cas d'erreur de manipulation et d'erreur en cours d'opération.

Cela peut entraîner des dommages corporels et matériels graves.

max. 1000 V_{DC}

- ▶ La mise en service ainsi que les activités de maintenance et d'entretien sur l'étage de puissance de l'onduleur ne peuvent être effectuées que par du personnel de service formé par Fronius et dans le cadre des dispositions techniques.
- Avant l'installation et la mise en service, lire les instructions d'installation et les instructions de service.

↑ AVERTISSEMENT!

Risque dû à la tension du secteur et à la tension DC des modules solaires exposés à la lumière.

Cela peut entraîner des dommages corporels et matériels graves.

- L'ensemble des opérations de raccordement, de maintenance et de service doivent être exécutées uniquement lorsque les côtés AC et DC de l'onduleur sont hors tension.
- Le raccordement fixe au réseau électrique public ne peut être réalisé que par un installateur électricien agréé.

AVERTISSEMENT!

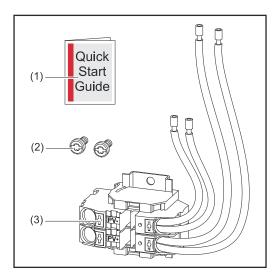
Risque de décharge électrique en raison du raccordement inapproprié de bornes de raccordement/connecteurs PV.

Une décharge électrique peut être mortelle.

► Lors de la connexion, s'assurer que chaque pôle d'une chaîne est acheminé par la même entrée PV, par exemple :

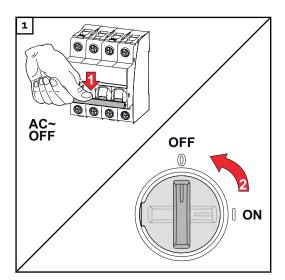
Pôle + chaîne 1 à l'entrée PV 1.1+ et Pôle - chaîne 1 à l'entrée PV 1.1-

AVERTISSEMENT!

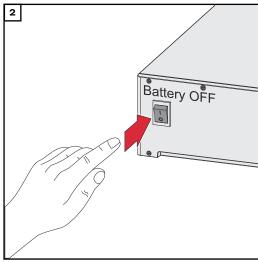

Danger en cas de bornes de raccordement endommagées et/ou encrassées.

Cela peut entraîner des dommages corporels et matériels graves.

- Avant les activités de raccordement, vérifier que les bornes de raccordement ne sont pas endommagées ni encrassées.
- Éliminer les impuretés à l'état hors tension.
- Les bornes de raccordement défectueuses doivent être remises en état par une entreprise spécialisée agréée.


Contenu de la livraison

Le kit connecteur DC GEN24 est disponible en option et peut être installé ultérieurement dans l'onduleur.



- 1. Feuillet annexe
- 2. 2 vis TX20
- 3. Kit connecteur DC GEN24

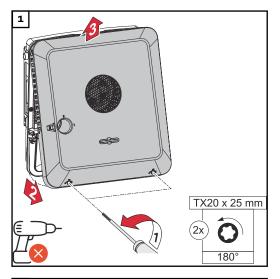
Mettre l'onduleur hors tension

Déconnecter le système de protection automatique. Placer le sectionneur DC en position « Off ».

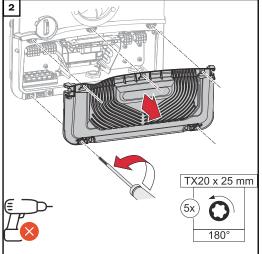
Débrancher les connexions des chaînes de modules solaires (+/-). Mettre la batterie connectée à l'onduleur hors tension.

Attendre l'expiration de la durée de décharge (2 minutes) des condensateurs de l'onduleur.

Installation

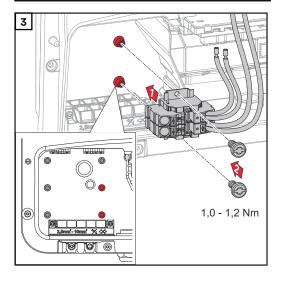

\mathbf{M}

ATTENTION!

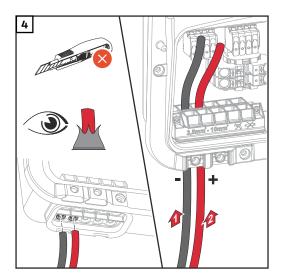

Risque dû aux câbles DC insuffisamment dimensionnés.

Il peut en résulter des dommages sur l'onduleur en raison d'une surcharge thermique.

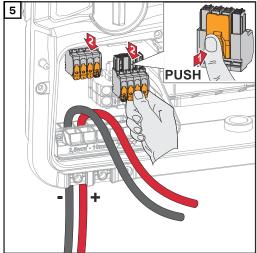
Pour le dimensionnement des câbles DC, il convient de respecter les indications du chapitre Câbles autorisés pour la connexion électrique à la page 54.

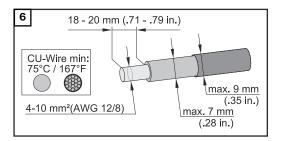


Desserrer les 2 vis situées en bas du couvercle du boîtier à l'aide d'un tournevis (TX20) et faire un tour de 180° vers la gauche. Soulever ensuite le couvercle du boîtier situé sous l'onduleur et le décrocher par le haut.

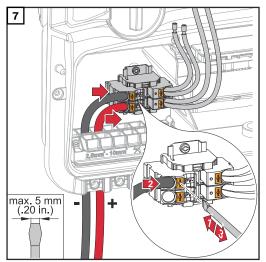


Desserrer les 5 vis du cache de la zone de raccordement à l'aide d'un tournevis (TX20) et faire un tour de 180° vers la gauche.

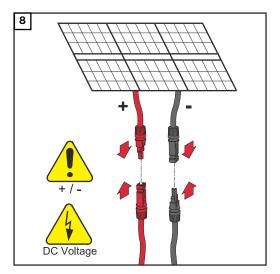

Retirer le cache de la zone de raccordement de l'appareil.


Insérer le connecteur DC GEN24 dans l'onduleur et le fixer avec les 2 vis (TX20) fournies et un couple de 1,0 - 1,2 Nm.

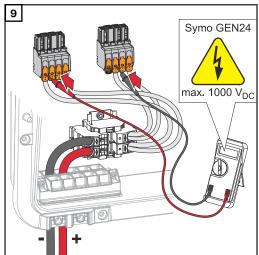
Pousser les câbles DC à travers les passages DC à la main.*



Appuyer sur le dispositif de verrouillage à l'arrière de la borne de raccordement et retirer les bornes de raccordement DC.

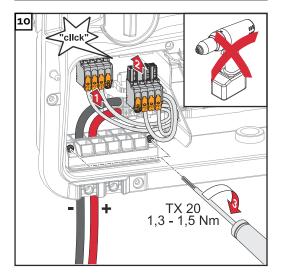


Dénuder les conducteurs uniques sur 18 à 20 mm.


Sélectionner la section de câble selon les indications de **Câbles autorisés** pour la connexion électrique à partir de la page **54**.

Appuyer sur le dispositif de verrouillage de la borne de raccordement à l'aide d'un tournevis plat. Insérer le conducteur unique dénudé dans l'emplacement prévu à cet effet jusqu'à la butée dans la borne de raccordement. Retirer ensuite le tournevis plat du dispositif de verrouillage.

Connecter les chaînes de modules solaires (+/-).


Vérifier la tension et la polarité des câbles DC avec un instrument de mesure approprié.

⚠ ATTENTION!

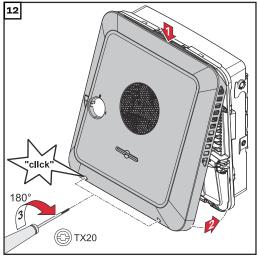
Danger dû à l'inversion de la polarité sur les bornes de raccordement.

Cela peut entraîner des dommages matériels graves sur l'onduleur.

Vérifier la tension(max. 1 000 V_{DC}) et la polarité des câbles DC avec un instrument de mesure approprié.

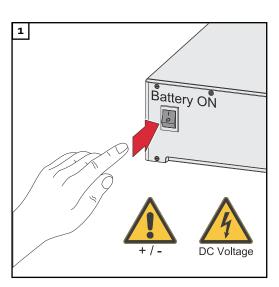
Insérer les bornes de raccordement DC dans les emplacements correspondants jusqu'à enclenchement. Serrer les vis de l'anti-traction au boîtier avec un tournevis (TX20) et un couple de 1,3 à 1,5 Nm.

REMARQUE!

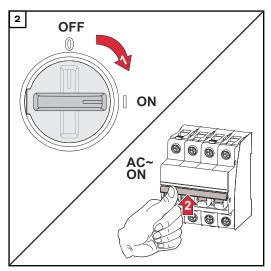

Risque dû à un couple de serrage excessif au niveau de l'anti-traction.

Cela peut endommager l'anti-traction.

Ne pas utiliser de perceuse-visseuse.



Placer le cache sur la zone de raccordement. Serrer les 5 vis dans l'ordre indiqué à l'aide d'un tournevis (TX20) et faire un tour de 180° vers la droite.



Accrocher le couvercle du boîtier sur l'onduleur par le haut.
Appuyer sur la partie inférieure du couvercle du boîtier et serrer les 2 vis avec un tournevis (TX20) en effectuant un tour de 180° vers la droite.

Mettre en service l'onduleur

Connecter les chaînes de modules solaires (+/-). Mettre sous tension la batterie raccordée à l'onduleur.

Placer le sectionneur DC en position « On ». Enclencher le système de protection automatique.

PV Point Comfort

Sécurité

AVERTISSEMENT!

Danger dû à la tension électrique sur les parties sous tension de l'installation photovoltaïque.

Cela peut entraîner des dommages corporels et matériels graves.

- ► Isoler les pièces sous tension de l'installation photovoltaïque sur tous les pôles et tous les côtés.
- Sécuriser contre la reconnexion conformément aux réglementations nationales.
- Attendre l'expiration de la durée de décharge (2 minutes) des condensateurs de l'onduleur.
- Vérifier l'absence de tension avec un instrument de mesure approprié.

↑ AVERTISSEMENT!

Danger en cas d'erreurs en cours d'opération.

Cela peut entraîner des dommages corporels et matériels graves.

- L'installation et le raccordement d'une option ne peuvent être effectués que par du personnel de service formé par Fronius et dans le cadre des dispositions techniques.
- Respecter les consignes de sécurité.

↑ AVERTISSEMENT!

Danger en cas de bornes de raccordement endommagées et/ou encrassées.

Cela peut entraîner des dommages corporels et matériels graves.

- Avant les activités de raccordement, vérifier que les bornes de raccordement ne sont pas endommagées ni encrassées.
- ▶ Éliminer les impuretés à l'état hors tension.
- Les bornes de raccordement défectueuses doivent être remises en état par une entreprise spécialisée agréée.

ATTENTION!

Danger en cas de décharge électrostatique (ESD).

Cela peut endommager les composants électroniques sensibles.

- Faire attention au marquage ESD sur le produit et/ou sur l'emballage.
- Prendre des mesures de protection ESD (mettre à la terre, neutraliser et protéger).

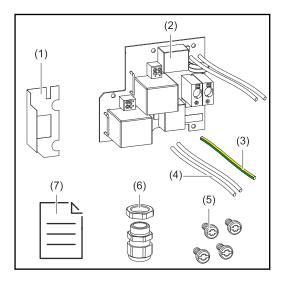
REMARQUE!

L'alimentation continue via le PV Point dépend de la puissance photovoltaïque disponible.

Si les modules solaires ne fournissent pas suffisamment de puissance, des interruptions peuvent se produire.

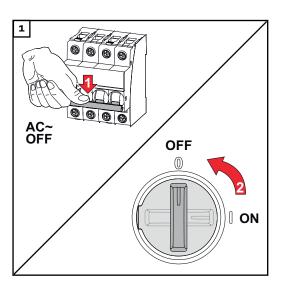
Ne pas connecter de consommateurs qui nécessitent une alimentation électrique ininterrompue.

IMPORTANT!

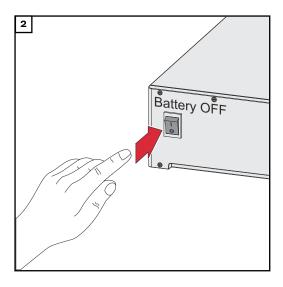

Les lois, normes et réglementations nationales en vigueur ainsi que les consignes

de l'opérateur réseau concerné doivent être respectées et appliquées. Il est fortement recommandé que l'installation soit organisée avec l'opérateur réseau et expressément approuvée par lui. Cette obligation s'applique en particulier à l'installateur du système.

Contenu de la livraison


Le PV Point Comfort est disponible en option et peut être installé ultérieurement dans l'onduleur.

Caractéristiques techniques, voir le chapitre **Caractéristiques techniques** à la page **169**.



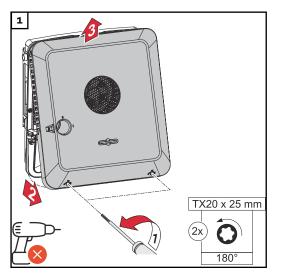
- 1. Film d'isolation
- 2. PV Point Comfort
- 3. Connexion PEN
- 4. Conducteur de phase/neutre
- 5. 4 vis TX20
- 6. Raccord à vis pour câble
- 7. Feuillet annexe

Mettre l'onduleur hors tension

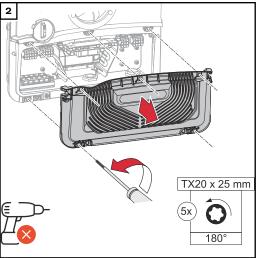
Déconnecter le système de protection automatique. Placer le sectionneur DC en position « Off ».

Débrancher les connexions des chaînes de modules solaires (+/-). Mettre la batterie connectée à l'onduleur hors tension.

Attendre l'expiration de la durée de décharge (2 minutes) des condensateurs de l'onduleur.

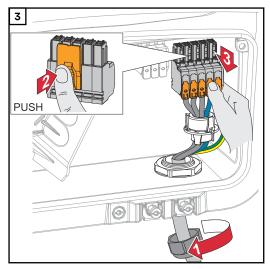

Installation

ATTENTION!

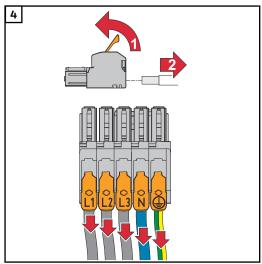

Danger dû à un conducteur de terre insuffisamment dimensionné.

Il peut en résulter des dommages sur l'onduleur en raison d'une surcharge thermique.

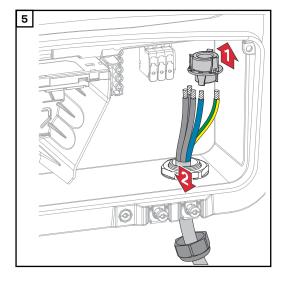
▶ Pour le dimensionnement du conducteur de terre, les normes et directives nationales doivent être respectées.

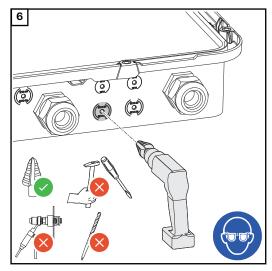


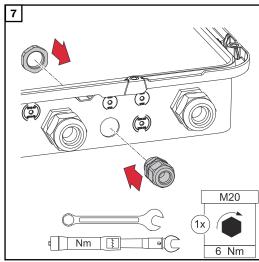
Desserrer les 2 vis situées en bas du couvercle du boîtier à l'aide d'un tournevis (TX20) et faire un tour de 180° vers la gauche. Soulever ensuite le couvercle du boîtier situé sous l'onduleur et le décrocher par le haut.

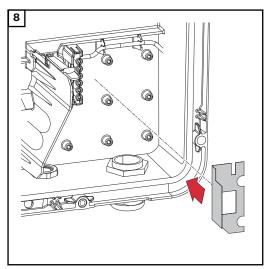


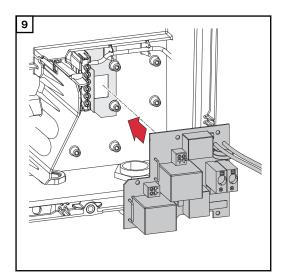
Desserrer les 5 vis du cache de la zone de raccordement à l'aide d'un tournevis (TX20) et faire un tour de 180° vers la gauche.

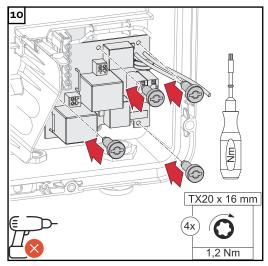

Retirer le cache de la zone de raccordement de l'appareil.

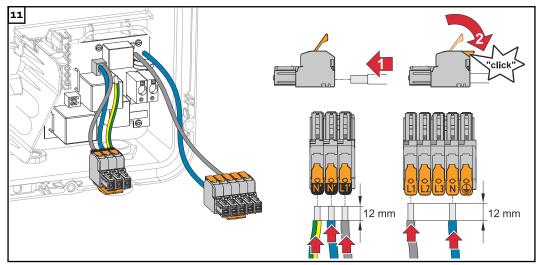

Appuyer sur le dispositif de verrouillage à l'arrière de la borne de raccordement et retirer les bornes de raccordement AC. Desserrer le raccord de câble.


Déconnecter les conducteurs uniques de la borne de raccordement AC (requis uniquement sur une installation déjà existante).

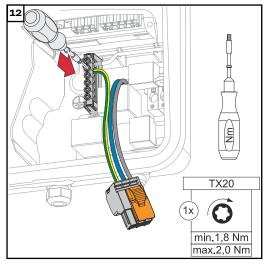

Débrancher l'âme en ferrite et retirer le câble secteur de l'onduleur.

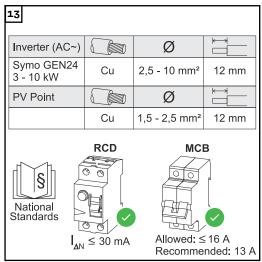

Percer le passe-câble optionnel avec un foret étagé.


Insérer le raccord de câble dans l'alésage et le fixer avec un couple de 6 Nm.


Insérer le film isolant sur le côté droit de la borne de raccordement de l'électrode de terre.

Insérer le circuit imprimé dans l'onduleur.


Fixer le circuit imprimé avec les 4 vis (TX20) fournies à un couple de 1,2 Nm.

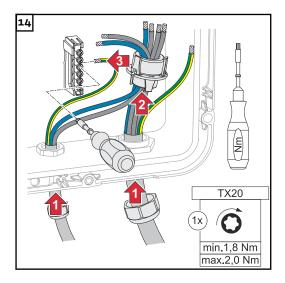

Dénuder les conducteurs uniques sur 12 mm. Ouvrir le levier d'actionnement de la borne de raccordement AC en le soulevant et insérer jusqu'à la butée le conducteur unique dénudé à l'emplacement prévu à cet effet sur la borne de raccordement. Fermer ensuite le levier d'actionnement jusqu'à enclenchement.

IMPORTANT!

La connexion PEN doit être conforme aux réglementations nationales ; le cas échéant, la connexion PEN fournie doit être remplacée.

Fixer la connexion PEN fournie à la deuxième entrée en partant du haut sur la borne de raccordement de l'électrode de terre avec un tournevis (TX20) et un couple de 1,8 à 2 Nm.

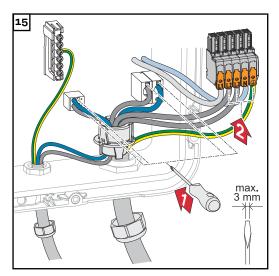
Dénuder les conducteurs uniques sur 12 mm.

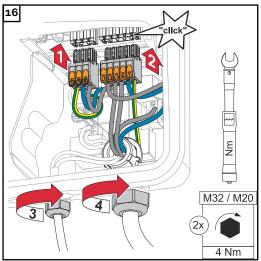

La section du câble doit être sélectionnée en fonction des informations relatives à la classe de puissance respective de l'onduleur (voir le chapitre Câbles autorisés pour la connexion électrique à la page54).

Le disjoncteur différentiel et le disjoncteur doivent être conçus conformément aux réglementations nationales.

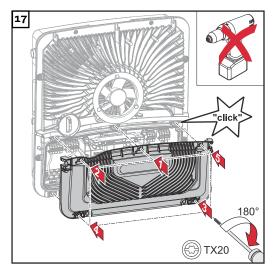
IMPORTANT!

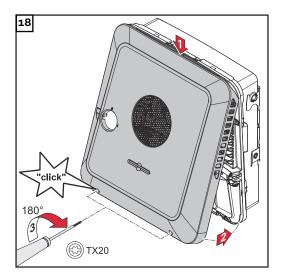
Si nécessaire, un disjoncteur de 16 A max. peut également être utilisé pour la protection. En mode d'alimentation en courant de secours, un maximum de 13 A peut être fourni. Si l'onduleur est sécurisé par un disjoncteur de 16 A max., il est possible de se passer d'un disjoncteur supplémentaire.


Le disjoncteur différentiel et le disjoncteur doivent être conçus conformément aux réglementations nationales.

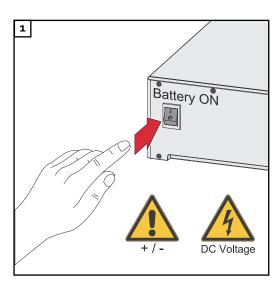

Faire passer les conducteurs de phase/ neutre à travers l'âme en ferrite. Fixer le conducteur de terre à la troisième entrée de la borne de raccordement de l'électrode de terre avec un tournevis (TX20) et un couple de 1,8 à 2 Nm.

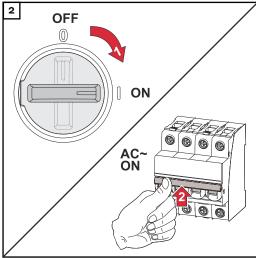
IMPORTANT!


Les conducteurs de terre ne doivent pas être guidés à travers l'âme en ferrite et doivent être raccordés en formant une boucle, de sorte qu'en cas de défaillance des raccords de câble, les conducteurs de terre soient déconnectés en dernier.


Raccorder les conducteurs de phase/ neutres dénudés aux bornes de raccordement prévues.

Insérer les bornes de raccordement dans les emplacements correspondants jusqu'à enclenchement. Fixer les écrous borgnes des raccords de câble avec un couple de 4 Nm.


Placer le cache sur la zone de raccordement. Serrer les 5 vis dans l'ordre indiqué à l'aide d'un tournevis (TX20) et faire un tour de 180° vers la droite.


Accrocher le couvercle du boîtier sur l'onduleur par le haut.

Appuyer sur la partie inférieure du couvercle du boîtier et serrer les 2 vis avec un tournevis (TX20) en effectuant un tour de 180° vers la droite.

Mettre en service l'onduleur

Connecter les chaînes de modules solaires (+/-). Mettre sous tension la batterie raccordée à l'onduleur.

Placer le sectionneur DC en position « On ». Enclencher le système de protection automatique.

Configurer le PV Point Comfort

Une version du micrologiciel 1.25.2 ou supérieure est nécessaire pour la mise en service du PV Point Comfort. Dans le cas de versions de micrologiciels obsolètes, des incompatibilités peuvent survenir entre l'onduleur et le PV Point Comfort. Dans ce cas, le micrologiciel de l'onduleur doit être mis à jour conformément au chapitre Mise à jour à la page 105.

- Ouvrir la page Web de l'onduleur.
 - ✓ Le site Web de l'onduleur s'affiche.
 - Ouvrir le navigateur Web.
 - Dans la barre d'adresse du navigateur, saisir l'adresse IP (adresse IP pour WLAN : 192.168.250.181, adresse IP pour LAN : 169.254.0.180) ou le nom d'hôte et de domaine de l'onduleur puis confirmer.
- Cliquer sur le bouton Configuration de l'appareil.
- Dans l'espace de connexion, se connecter à l'aide de l'utilisateur **Technicien** et du mot de passe de technicien.
- Ouvrir le menu Fonctions et E/S.
- Activer la fonction Alimentation en courant de secours.
- 6 Sélectionner le mode PV Point dans la liste déroulante Mode d'alimentation en courant de secours.
- 7 Cliquer sur le bouton **Enregistrer** pour enregistrer les paramètres.
- ✓ Le mode d'alimentation en courant de secours PV Point est configuré.

Tester le mode d'alimentation en courant de secours

Il est recommandé de tester le mode d'alimentation en courant de secours :

- lors de la première installation et configuration ;
- après des travaux sur l'armoire de commande ;
- en cours d'exploitation (recommandation : au moins une fois par an).

Pour le mode d'essai, il est recommandé de charger la batterie à 30 % minimum.

Une description de l'exécution du mode d'essai se trouve sur la **check-list - Alimentation en courant de secours** (https://www.fronius.com/en/search-page, référence : 42,0426,0365).

Annexe

Maintenance, entretien et élimination

Généralités

L'onduleur est conçu de manière à ce qu'aucune opération de maintenance supplémentaire ne soit nécessaire. Cependant, certains points doivent être respectés pendant l'exploitation pour garantir un fonctionnement optimal de l'onduleur.

Maintenance

Les interventions de maintenance et de service ne peuvent être exécutées que par du personnel de service qualifié et formé par Fronius.

Nettoyage

Au besoin, nettoyer l'onduleur au moyen d'un chiffon humide. Ne pas utiliser de produit de nettoyage, de produit abrasif, de solvant ou de produit similaire pour le nettoyage de l'onduleur.

Sécurité

Le sectionneur DC sert exclusivement à la mise hors tension de l'étage de puissance. Lorsque le sectionneur DC est déconnecté, la zone de raccordement reste sous tension.

AVERTISSEMENT!

Risque dû à la tension du secteur et à la tension DC des modules solaires.

Cela peut entraîner des dommages corporels et matériels graves.

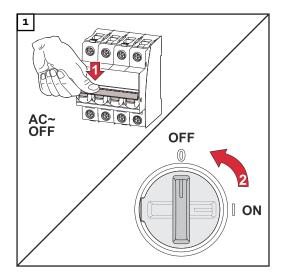
- Seuls des installateurs électriciens agréés sont habilités à ouvrir la zone de raccordement.
- ► Seul le personnel de service formé par Fronius est habilité à ouvrir le bloc indépendant des étages de puissance.
- Avant toute opération de raccordement, veiller à ce que les côtés AC et DC en amont de l'onduleur soient hors tension.

AVERTISSEMENT!

Danger en raison de la tension résiduelle de condensateurs.

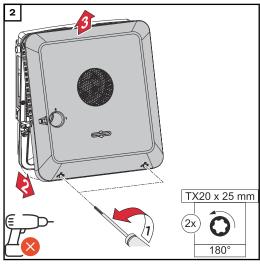
Cela peut entraîner des dommages corporels et matériels graves.

 Attendre l'expiration de la durée de décharge (2 minutes) des condensateurs de l'onduleur.

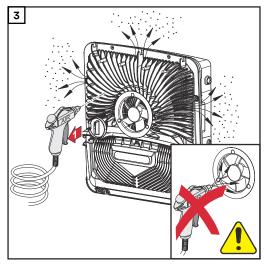

Fonctionnement dans des environnements soumis à un fort dégagement de poussières

REMARQUE!

En cas de fonctionnement de l'onduleur dans des environnements soumis à un fort dégagement de poussières, des saletés peuvent se déposer sur le dissipateur thermique et le ventilateur.


Cela peut entraîner une perte de puissance de l'onduleur en raison d'un refroidissement insuffisant.

- S'assurer que l'air ambiant peut circuler librement à travers les fentes d'aération de l'onduleur à tout moment.
- ► Enlever les dépôts de saleté du dissipateur thermique et du ventilateur.



Mettre l'onduleur hors tension et attendre que les condensateurs se déchargent (2 minutes) et que le ventilateur s'arrête.

Mettre le sectionneur DC en position « Off ».

Desserrer les vis situées en bas du couvercle du boîtier à l'aide d'un tournevis (TX20) et faire un tour de 180° vers la gauche. Soulever ensuite le couvercle du boîtier situé sous l'onduleur et le décrocher par le haut.

Enlever les dépôts de saletés sur le dissipateur thermique et le ventilateur avec de l'air comprimé, un chiffon ou un pinceau.

REMARQUE!

Risque d'endommagement du palier du ventilateur en raison d'un nettoyage non conforme.

Une vitesse de rotation et une pression excessives sur le palier du ventilateur peuvent causer des dommages.

- ▶ Bloquer le ventilateur et nettoyer à l'air comprimé.
- Nettoyer le ventilateur à l'aide d'un chiffon ou d'un pinceau sans y appliquer de pression.

Pour remettre l'onduleur en service, effectuer les étapes mentionnées ci-dessus dans l'ordre inverse.

Élimination

Les déchets d'équipements électriques et électroniques doivent être collectés de manière séparée et recyclés dans le respect de l'environnement, conformément à la directive européenne et à la législation nationale. Les appareils usagés doivent être retournés au revendeur ou déposés dans un système de collecte et d'élimination local agréé. Une élimination correcte de l'appareil usagé favorise le recyclage durable des ressources et empêche les effets négatifs sur la santé et l'environnement.

Matériaux d'emballage

- Les collecter séparément
- Respecter les consignes locales en vigueur
- Diminuer le volume du carton

Conditions de garantie

Garantie constructeur Fronius

Les conditions de garantie détaillées, spécifiques au pays, sont disponibles sur www.fronius.com/solar/garantie .

Afin de bénéficier pleinement de la durée de garantie de votre nouveau produit Fronius, vous devez vous enregistrer sur : **www.solarweb.com**.

Messages d'état et solutions

Affichage

Les messages d'état sont affichés sur l'interface utilisateur de l'onduleur dans le menu Système > Journal des événements ou dans le menu utilisateur sous Notifications ou sur Fronius Solar.web.

Si la configuration le permet, voir le chapitre Fronius Solar.web à la page

Messages d'état

1006 - ArcDetected (LED de fonctionnement : clignote en jaune)

Un arc électrique a été détecté sur l'installation photovoltaïque. Cause:

Solution : Aucune action requise. Le mode d'injection dans le réseau est à nou-

veau démarré automatiquement au bout de 5 minutes.

1030 – WSD Open (LED de fonctionnement : s'allume en rouge)

Un appareil raccordé dans la chaîne WSD a interrompu la ligne de si-Cause:

> gnal (par ex. une protection contre la surtension) ou le pont installé de série a été retiré et aucun dispositif de déclenchement n'a été ins-

tallé.

Solution: Si la protection contre la surtension SPD est déclenchée, l'onduleur

doit être remis en état par une entreprise spécialisée agréée.

OU: Installer le pont installé de série ou un dispositif de déclenchement.

OU: Placer l'interrupteur WSD (Wired Shut Down) sur la position 1

(maître WSD).

AVERTISSEMENT!

Danger en cas d'erreurs en cours d'opération.

Cela peut entraîner des dommages corporels et matériels graves.

- L'installation et le raccordement d'une protection contre la surtension SPD ne peuvent être effectués que par du personnel de service formé par Fronius et dans le cadre des dispositions techniques.
- Respecter les consignes de sécurité.

1173 - ArcContinuousFault (LED de fonctionnement : s'allume en rouge)

Cause : Un arc électrique a été détecté sur l'installation photovoltaïque et le

nombre maximum d'activations automatiques en 24 heures a été at-

teint.

Solution: Appuyer sur le capteur de l'onduleur pendant 3 secondes (max. 6 se-

condes).

OU: Confirmer le statut 1173 - ArcContinuousFault dans le menu

Système > Journal des événements sur l'interface utilisateur de l'on-

duleur.

OU: Confirmer le statut 1173 - ArcContinuousFault dans le menu utilisa-

teur Notifications sur l'interface utilisateur de l'onduleur.

⚠ ATTENTION!

Danger dû à des composants endommagés sur l'installation photovoltaïque Cela peut entraîner des dommages corporels et matériels graves.

- Avant de confirmer le statut 1173 ArcContinuousFault, l'ensemble de l'installation photovoltaïque concernée doit être contrôlée pour détecter d'éventuels dommages.
- Faire réparer les composants endommagés par du personnel qualifié.

1191 - AfciDataTransfer (LED de fonctionnement : clignote en jaune)

Cause: Un arc électrique a été détecté sur l'installation photovoltaïque.

Solution: Aucune action requise.

Caractéristiques techniques

Fronius Symo GEN24 3.0 / 3.0 Plus

Données d'entrée DC	
Plage de tension MPP (à puissance nominale)	125 à 800 V
Puissance de connexion max. (P _{PV} _{max}) Totale PV 1 PV 2	4 500 Wc 4 500 Wc 4 500 Wc
Puissance photovoltaïque traitable max. Totale PV 1 PV 2	3 150 Wc 3 150 Wc 3 150 Wc
Tension d'entrée max. avec 1 000 W/m² / -10 °C à vide	1 000 V
Injection tension d'entrée de démarrage sur secteur ⁵⁾	80 V
Courant d'entrée max. PV 1 PV 2	12,5 A 12,5 A
Courant de court-circuit max. du générateur photovoltaïque (I _{SC PV}) PV 1 PV 2	20 A 20 A
Courant de court-circuit max. du générateur photovoltaïque total $(I_{SC\ PV1} + I_{SC\ PV2} = I_{SC\ max})$	40 A
Courant d'alimentation de retour max. de l'onduleur vers le panneau photo- voltaïque ³⁾ PV 1 PV 2	20 A 20 A
Nombre d'entrées - PV 1	2
Nombre d'entrées - PV 2	1
Capacité max. du générateur photo- voltaïque par rapport à la terre	1 000 nF
Valeur limite du test de résistance d'isolement entre le générateur pho- tovoltaïque et la terre (à la livraison) ⁸⁾	100 kΩ
Plage réglable du test de résistance d'isolement entre le générateur pho- tovoltaïque et la terre ⁷⁾	10 à 10 000 kΩ
Valeur limite et durée de déclenche- ment de la surveillance soudaine du courant de défaut (à la livraison)	30 / 300 mA / ms 60 / 150 mA / ms 90 / 40 mA / ms

Données d'entrée DC	
Valeur limite et durée de déclenche- ment de la surveillance continue du courant de défaut (à la livraison)	300 / 300 mA / ms
Plage réglable de surveillance conti- nue du courant de défaut ⁷⁾	30 à 300 mA
Répétition cyclique du test de résis- tance d'isolement (à la livraison)	24 h
Plage réglable pour la répétition cy- clique du test de résistance d'isole- ment	-

Données d'entrée DC batterie	
Tension max.	700 V
Tension min.	160 V
Courant max.	12,5 A
Puissance max.	3 130 W
Entrées DC	1

Données d'entrée/sortie AC	
Puissance de sortie nominale (P _{nom})	3 000 M
Puissance de sortie max.	3 000 W
Puissance apparente nominale	3 000 VA
Tension nominale du secteur	3 ~ NPE 220 V / 380 V 3 ~ NPE 230 V / 400 V
Tension du secteur min.	154 V ¹⁾
Tension du secteur max.	280 V ¹⁾
Courant de sortie max.	8 A
Courant de sortie assigné (à 230 V)	4,3 A
Courant de démarrage ⁶⁾	9,9 A / 4 ms
Fréquence nominale	50/60 Hz ¹⁾
Courant alternatif de court-circuit initial / phase $I_{\mbox{\scriptsize K}}\mbox{\ensuremath{^{''}}}$	8 A
Taux de distorsion harmonique	< 3,5 %
Facteur de puissance cos phi ²⁾	0 - 1 (réglable) 0,7 - 1 (recommandé)
Impédance secteur max. autorisée Z _{max} au PCC ⁴⁾	aucune
Courant résiduel de sortie max. par période	7,5 A / 157 ms

Données de sortie AC PV Point / PV Point Comfort	
Puissance de sortie max.	4 133 W (pour 5 s)

Données de sortie AC PV Point / PV Point Comfort	
Puissance de sortie nominale	3 000 W
Courant de sortie assigné	13 A
Tension nominale du secteur	1 ~ NPE 220 V / 230 V / 240 V
Fréquence nominale	53/63 Hz ¹⁾
Temps de commutation	~ 15 s
Facteur de puissance cos phi ²⁾	0 - 1

Données générales	
Rendement max.	98,1 %
Rendement europ. (U _{mpp nom})	96,7 %
Rendement europ. (U _{mpp max})	96 %
Rendement europ. (U _{mpp min})	95,1 %
Autoconsommation pendant la nuit	< 10 W
Refroidissement	Ventilation forcée régulée
Indice de protection	IP 66
Dimensions H × l × P	530 × 474 × 165 mm
Poids	15,6 kg
Topologie de l'onduleur	Non isolé, sans transformateur
Température ambiante admise	-25 °C à +60 °C
Humidité de l'air admise	0 - 100 % (avec condensation)
Classe d'émission CEM (selon CEI 61000-6-2, CEI 61000-6-3)	В
Catégorie de surtension DC / AC (selon la norme CEI 62109-1)	2/3
Degré de pollution	2
Niveau de pression acoustique	36 dB(A) (réf. 20μPA)
Classe de sécurité (selon CEI 62103)	1

Dispositifs de protection	
Mesure de l'isolation DC ⁹⁾	Avertissement / Déconnexion pour R _{ISO} < 100 kOhm
Comportement en cas de surcharge	Déplacement du point de travail, limi- tation de puissance
Sectionneur DC	intégré
Unité de surveillance des courants résiduels ⁹⁾	intégrée
Classification unité de surveillance des courants résiduels	La classe logicielle de la/des plate- forme(s) de sécurité est définie comme une fonction de commande de classe B (à un canal avec autotest périodique) conformément à l'an- nexe H de la CEI 60730.

Dispositifs de protection	
Détection active des îlots	Méthode de décalage de fréquence
AFCI	Intégrée
Classification AFPE (AFCI) (selon CEI63027) ⁹⁾	= F-I-AFPE-1-3-1 Cache complet Intégré AFPE 1 chaîne surveillée par port d'entrée 3 ports d'entrée par canal (MPP1 : 2, MPP2 : 1) 1 canal surveillé

Communication de données	
Connecteur WLAN SMA-RP (ID FCC: QKWPILOT01 / ID IC: 12270A-PILOT01)	802.11b/g/n (WPA, WPA2) Fréquence : 2,4 GHz
Ethernet (LAN)	RJ 45, 10/100 MBit
Coupure par câble — Wired Shut Down (WSD)	max. 28 appareils / chaîne WSD Distance max. entre 2 appar- eils = 100 m
Modbus RTU SunSpec (2x)	RS485 2 fils
Niveau de tension des entrées numériques	bas : min. 0 V - max. 1,8 V haut : min. 4,5 V - max. 28,8 V
Courants d'entrée des entrées numériques	selon tension d'entrée ; résistance d'entrée = 70 kOhm
Puissance totale pour la sortie numérique (avec alimentation interne)	6 W à 12 V (USB non chargée)
Puissance par sortie numérique (avec alimentation externe)	1 A à >12,5 V - 24 V (max. 3 A au total)
Datalogger/serveur Web	intégré

Fronius Symo GEN24 4.0 / 4.0 Plus

Données d'entrée DC	
Plage de tension MPP (à puissance nominale)	170 à 800 V
Puissance de connexion max. (P _{PV} _{max}) Totale PV 1 PV 2	6 000 Wc 6 000 Wc 6 000 Wc
Puissance photovoltaïque traitable max. Totale PV 1 PV 2	4 180 Wc 4 180 Wc 4 180 Wc
Tension d'entrée max. avec 1 000 W/m² / -10 °C à vide	1 000 V

Données d'entrée DC	
Injection tension d'entrée de démarrage sur secteur ⁵⁾	80 V
Courant d'entrée max. PV 1 PV 2	12,5 A 12,5 A
Courant de court-circuit max. du générateur photovoltaïque (I _{SC PV}) PV 1 PV 2	20 A 20 A
Courant de court-circuit max. du générateur photovoltaïque total $(I_{SC\ PV1}+I_{SC\ PV2}=I_{SC\ max})$	40 A
Courant d'alimentation de retour max. de l'onduleur vers le panneau photo- voltaïque ³⁾ PV 1 PV 2	20 A 20 A
Nombre d'entrées - PV 1	2
Nombre d'entrées - PV 2	1
Capacité max. du générateur photo- voltaïque par rapport à la terre	1 000 nF
Valeur limite du test de résistance d'isolement entre le générateur pho- tovoltaïque et la terre (à la livraison) ⁸⁾	100 kΩ
Plage réglable du test de résistance d'isolement entre le générateur pho- tovoltaïque et la terre ⁷⁾	10 à 10 000 kΩ
Valeur limite et durée de déclenche- ment de la surveillance soudaine du courant de défaut (à la livraison)	30 / 300 mA / ms 60 / 150 mA / ms 90 / 40 mA / ms
Valeur limite et durée de déclenche- ment de la surveillance continue du courant de défaut (à la livraison)	300 / 300 mA / ms
Plage réglable de surveillance conti- nue du courant de défaut ⁷⁾	30 à 300 mA
Répétition cyclique du test de résis- tance d'isolement (à la livraison)	24 h
Plage réglable pour la répétition cy- clique du test de résistance d'isole- ment	-

Données d'entrée DC batterie	
Tension max.	700 V
Tension min.	160 V
Courant max.	12,5 A
Puissance max.	4 170 W
Entrées DC	1

Données d'entrée/sortie AC	
Puissance de sortie nominale (P _{nom})	4 000 W
Puissance de sortie max.	4 000 W
Puissance apparente nominale	4 000 VA
Tension nominale du secteur	3 ~ NPE 220 V / 380 V 3 ~ NPE 230 V / 400 V
Tension du secteur min.	154 V ¹⁾
Tension du secteur max.	280 V ¹⁾
Courant de sortie max.	8 A
Courant de sortie assigné (à 230 V)	5,8 A
Courant de démarrage ⁶⁾	9,9 A / 4 ms
Fréquence nominale	50/60 Hz ¹⁾
Courant alternatif de court-circuit initial / phase I _K "	A 8
Taux de distorsion harmonique	< 3,5 %
Facteur de puissance cos phi ²⁾	0 - 1 (réglable) 0,7 - 1 (recommandé)
Impédance secteur max. autorisée Z _{max} au PCC ⁴⁾	aucune
Courant résiduel de sortie max. par période	7,5 A / 157 ms

Données de sortie AC PV Point / PV Point Comfort	
Puissance de sortie max.	4 133 W (pour 5 s)
Puissance de sortie nominale	3 000 W
Courant de sortie assigné	13 A
Tension nominale du secteur	1 ~ NPE 220 V / 230 V / 240 V
Fréquence nominale	53/63 Hz ¹⁾
Temps de commutation	~ 15 s
Facteur de puissance cos phi ²⁾	0 - 1

Données générales	
Rendement max.	98,2 %
Rendement europ. (U _{mpp nom})	97 %
Rendement europ. (U _{mpp max})	96,6 %
Rendement europ. (U _{mpp min})	95,8 %
Autoconsommation pendant la nuit	< 10 W
Refroidissement	Ventilation forcée régulée
Indice de protection	IP 66
Dimensions H × l × P	530 × 474 × 165 mm

Données générales	
Poids	15,6 kg
Topologie de l'onduleur	Non isolé, sans transformateur
Température ambiante admise	-25 °C à +60 °C
Humidité de l'air admise	0 - 100 % (avec condensation)
Classe d'émission CEM (selon CEI 61000-6-2, CEI 61000-6-3)	В
Catégorie de surtension DC / AC (selon la norme CEI 62109-1)	2/3
Degré de pollution	2
Niveau de pression acoustique	36 dB(A) (réf. 20μPA)
Classe de sécurité (selon CEI 62103)	1

Dispositifs de protection	
Mesure de l'isolation DC ⁹⁾	Avertissement / Déconnexion pour R _{ISO} < 100 kOhm
Comportement en cas de surcharge	Déplacement du point de travail, limi- tation de puissance
Sectionneur DC	intégré
Unité de surveillance des courants résiduels ⁹⁾	intégrée
Classification unité de surveillance des courants résiduels	La classe logicielle de la/des plate- forme(s) de sécurité est définie comme une fonction de commande de classe B (à un canal avec autotest périodique) conformément à l'an- nexe H de la CEI 60730.
Détection active des îlots	Méthode de décalage de fréquence
AFCI	Intégrée
Classification AFPE (AFCI) (selon CEI63027) ⁹⁾	= F-I-AFPE-1-3-1 Cache complet Intégré AFPE 1 chaîne surveillée par port d'entrée 3 ports d'entrée par canal (MPP1 : 2, MPP2 : 1) 1 canal surveillé

Communication de données	
Connecteur WLAN SMA-RP (ID FCC: QKWPILOT01 / ID IC: 12270A-PILOT01)	802.11b/g/n (WPA, WPA2) Fréquence : 2,4 GHz
Ethernet (LAN)	RJ 45, 10/100 MBit
Coupure par câble – Wired Shut Down (WSD)	max. 28 appareils / chaîne WSD Distance max. entre 2 appar- eils = 100 m
Modbus RTU SunSpec (2x)	RS485 2 fils

Communication de données	
Niveau de tension des entrées numériques	bas : min. 0 V - max. 1,8 V haut : min. 4,5 V - max. 28,8 V
Courants d'entrée des entrées numériques	selon tension d'entrée ; résistance d'entrée = 70 kOhm
Puissance totale pour la sortie numérique (avec alimentation interne)	6 W à 12 V (USB non chargée)
Puissance par sortie numérique (avec alimentation externe)	1 A à >12,5 V - 24 V (max. 3 A au total)
Datalogger/serveur Web	intégré

Fronius Symo GEN24 5.0 / 5.0 Plus

Données d'entrée DC	
Plage de tension MPP (à puissance nominale)	210 à 800 V
Puissance de connexion max. (P _{PV} _{max}) Totale PV 1 PV 2	7 500 Wc 6 500 Wc 6 500 Wc
Puissance photovoltaïque traitable max. Totale PV 1 PV 2	5 200 Wc 5 200 Wc 5 200 Wc
Tension d'entrée max. avec 1 000 W/m² / -10 °C à vide	1 000 V
Injection tension d'entrée de démarrage sur secteur ⁵⁾	80 V
Courant d'entrée max. PV 1 PV 2	12,5 A 12,5 A
Courant de court-circuit max. du générateur photovoltaïque (I _{SC PV}) PV 1 PV 2	20 A 20 A
Courant de court-circuit max. du générateur photovoltaïque total $(I_{SC\ PV1} + I_{SC\ PV2} = I_{SC\ max})$	40 A
Courant d'alimentation de retour max. de l'onduleur vers le panneau photo- voltaïque ³⁾ PV 1 PV 2	20 A 20 A
Nombre d'entrées - PV 1	2
Nombre d'entrées - PV 2	1
Capacité max. du générateur photo- voltaïque par rapport à la terre	1 000 nF

Données d'entrée DC	
Valeur limite du test de résistance d'isolement entre le générateur pho- tovoltaïque et la terre (à la livraison) ⁸⁾	100 kΩ
Plage réglable du test de résistance d'isolement entre le générateur pho- tovoltaïque et la terre ⁷⁾	10 à 10 000 kΩ
Valeur limite et durée de déclenche- ment de la surveillance soudaine du courant de défaut (à la livraison)	30 / 300 mA / ms 60 / 150 mA / ms 90 / 40 mA / ms
Valeur limite et durée de déclenche- ment de la surveillance continue du courant de défaut (à la livraison)	300 / 300 mA / ms
Plage réglable de surveillance conti- nue du courant de défaut ⁷⁾	30 à 300 mA
Répétition cyclique du test de résistance d'isolement (à la livraison)	24 h
Plage réglable pour la répétition cy- clique du test de résistance d'isole- ment	-

Données d'entrée DC batterie	
Tension max.	700 V
Tension min.	160 V
Courant max.	12,5 A
Puissance max.	5 210 W
Entrées DC	1

Données d'entrée/sortie AC	
Puissance de sortie nominale (P _{nom})	5 000 W
Puissance de sortie max.	5 000 W
Puissance apparente nominale	5 000 VA
Tension nominale du secteur	3 ~ NPE 220 V / 380 V 3 ~ NPE 230 V / 400 V
Tension du secteur min.	154 V ¹⁾
Tension du secteur max.	280 V ¹⁾
Courant de sortie max.	8 A
Courant de sortie assigné (à 230 V)	7,2 A
Courant de démarrage ⁶⁾	9,9 A / 4 ms
Fréquence nominale	50/60 Hz ¹⁾
Courant alternatif de court-circuit initial / phase I_K "	8 A
Taux de distorsion harmonique	< 3,5 %

Données d'entrée/sortie AC	
Facteur de puissance cos phi ²⁾	0 - 1 (réglable) 0,7 - 1 (recommandé)
Impédance secteur max. autorisée Z _{max} au PCC ⁴⁾	aucune
Courant résiduel de sortie max. par période	7,5 A / 157 ms

Données de sortie AC PV Point / PV Point Comfort	
Puissance de sortie max.	4 133 W (pour 5 s)
Puissance de sortie nominale	3 000 W
Courant de sortie assigné	13 A
Tension nominale du secteur	1 ~ NPE 220 V / 230 V / 240 V
Fréquence nominale	53/63 Hz ¹⁾
Temps de commutation	~ 15 s
Facteur de puissance cos phi ²⁾	0 - 1

Données générales	
Rendement max.	98,2 %
Rendement europ. (U _{mpp nom})	97,5 %
Rendement europ. (U _{mpp max})	97 %
Rendement europ. (U _{mpp min})	96,2 %
Autoconsommation pendant la nuit	< 10 W
Refroidissement	Ventilation forcée régulée
Indice de protection	IP 66
Dimensions H × l × P	530 × 474 × 165 mm
Poids	15,6 kg
Topologie de l'onduleur	Non isolé, sans transformateur
Température ambiante admise	-25 °C à +60 °C
Humidité de l'air admise	0 - 100 % (avec condensation)
Classe d'émission CEM (selon CEI 61000-6-2, CEI 61000-6-3)	В
Catégorie de surtension DC / AC (selon la norme CEI 62109-1)	2/3
Degré de pollution	2
Niveau de pression acoustique	36 dB(A) (réf. 20μPA)
Classe de sécurité (selon CEI 62103)	1

Dispositifs de protection	
Mesure de l'isolation DC ⁹⁾	Avertissement / Déconnexion pour R _{ISO} < 100 kOhm

Dispositifs de protection	
Comportement en cas de surcharge	Déplacement du point de travail, limi- tation de puissance
Sectionneur DC	intégré
Unité de surveillance des courants résiduels ⁹⁾	intégrée
Classification unité de surveillance des courants résiduels	La classe logicielle de la/des plate- forme(s) de sécurité est définie comme une fonction de commande de classe B (à un canal avec autotest périodique) conformément à l'an- nexe H de la CEI 60730.
Détection active des îlots	Méthode de décalage de fréquence
AFCI	Intégrée
Classification AFPE (AFCI) (selon CEI63027) ⁹⁾	= F-I-AFPE-1-3-1 Cache complet Intégré AFPE 1 chaîne surveillée par port d'entrée 3 ports d'entrée par canal (MPP1 : 2, MPP2 : 1) 1 canal surveillé

Communication de données	
Connecteur WLAN SMA-RP (ID FCC: QKWPILOT01 / ID IC: 12270A-PILOT01)	802.11b/g/n (WPA, WPA2) Fréquence : 2,4 GHz
Ethernet (LAN)	RJ 45, 10/100 MBit
Coupure par câble – Wired Shut Down (WSD)	max. 28 appareils / chaîne WSD Distance max. entre 2 appar- eils = 100 m
Modbus RTU SunSpec (2x)	RS485 2 fils
Niveau de tension des entrées numériques	bas : min. 0 V - max. 1,8 V haut : min. 4,5 V - max. 28,8 V
Courants d'entrée des entrées numériques	selon tension d'entrée ; résistance d'entrée = 70 kOhm
Puissance totale pour la sortie numérique (avec alimentation interne)	6 W à 12 V (USB non chargée)
Puissance par sortie numérique (avec alimentation externe)	1 A à >12,5 V - 24 V (max. 3 A au total)
Datalogger/serveur Web	intégré

WLAN

WLAN	
Plage de fréquence	2 412 - 2 462 MHz

WLAN	
Canaux utilisés / Puissance	Canal : 1-11 b,g,n HT20 Canal : 3-9 HT40 <18 dBm
Modulation	802.11b: DSSS (1Mbps DBPSK, 2Mbps DQPSK, 5.5/11Mbps CCK) 802.11g: OFDM (6/9Mbps BPSK, 12/18Mbps QPSK, 24/36Mbps 16- QAM, 48/54Mbps 64-QAM) 802.11n: OFDM (6.5 BPSK, QPSK, 16-QAM, 64-QAM)

Caractéristiques techniques Protection contre la surtension DC SPD type 1+2 GEN24

Données générales	
Courant de service continu (I _{cpv})	< 0,1 mA
Courant de décharge nominal (I _n) - 15 x 8/20 μs impulsions	20 kA
Courant de choc (l _{imp}) Capacité de décharge max. @ 10/350 μs	6,25 kA
Niveau de protection (U _p) (montage en étoile)	4 kV
Résistance aux courts-circuits PV (I _{scpv})	15 kA

Dispositif d'isolation	
Dispositif d'isolation thermique	intégré
Fusible externe	aucun

Propriétés mécaniques	
Indication de déconnexion	Affichage mécanique (rouge)
Indication à distance de l'interruption de connexion	Sortie sur dispositif de contact à per- mutation
Matériau du boîtier	Thermoplastique UL-94-V0
Normes d'essai	CEI 61643-31 / DIN EN 50539-11 UL1449 éd.4 / VDE 0185-305-3 Bbl. 5

Explication des notes de bas de page

- Les valeurs indiquées sont des valeurs de référence; en fonction de la demande, l'onduleur est spécifiquement paramétré en fonction de chaque pays.
- 2) En fonction du setup pays ou des paramétrages spécifiques de l'appareil (ind. = inductif ; cap. = capacitif).

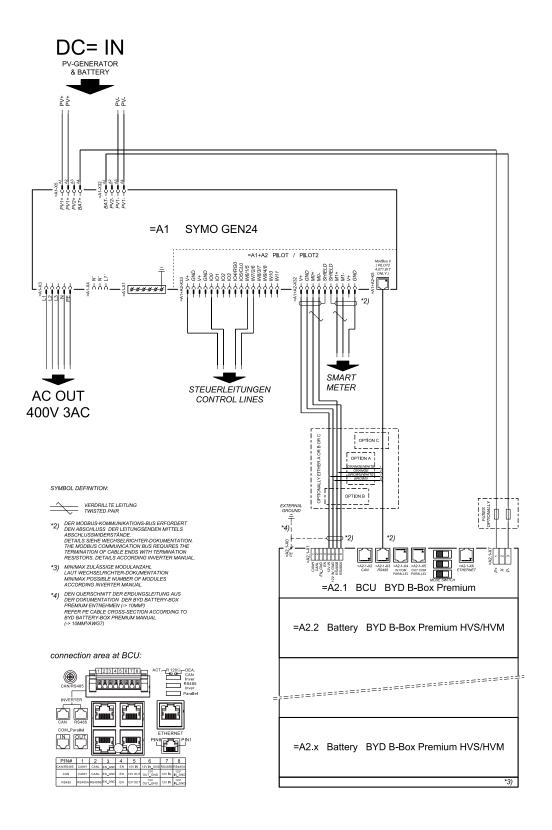
- 3) Courant maximal d'un module solaire défectueux vers tous les autres modules solaires. De l'onduleur lui-même au côté PV de l'onduleur, il est égal à O A.
- 4) Garanti par l'installation électrique de l'onduleur.
- 5) Pour un fonctionnement en mode alimentation en courant de secours (PV Point) sans batterie, une tension min. de 150 V est nécessaire.
- 6) Pic de courant lors du raccordement de l'onduleur.
- 7) Les valeurs indiquées sont des valeurs standard ; ces valeurs doivent être adaptées selon les exigences et la puissance photovoltaïque.
- 8) La valeur indiquée est une valeur maximale ; le dépassement de la valeur maximale peut avoir une influence négative sur la fonction.
- 9) Logiciel de classe B (un canal avec autotest périodique) selon la norme CEI 60730-1 annexe H.

Sectionneur DC intégré

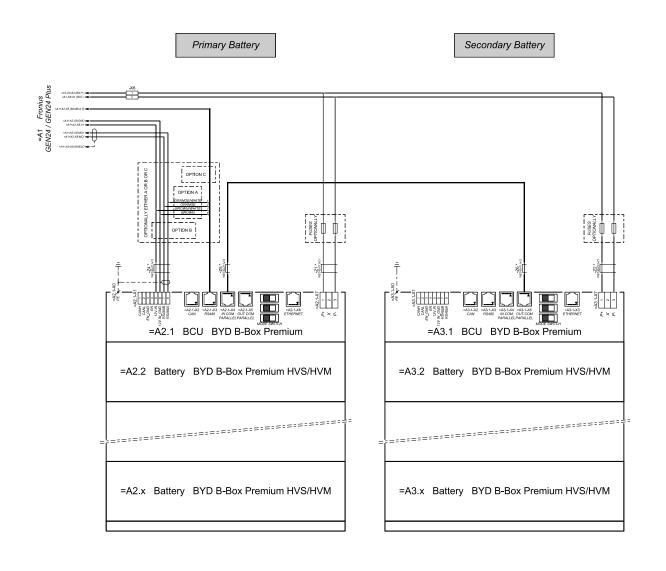
Données générales				
Nom du produit	Benedict LS32 E 7905			
Tension d'isolation assignée	1 000 V _{DC}			
Tension de résistance aux ondes de choc assignée	8 kV			
Adapté à l'isolation	Oui, DC seulement			
Catégorie d'utilisation et/ou catégorie d'utilisation PV	selon CEI/EN 60947-3 catégorie d'utilisation DC-PV2			
Courant assigné de courte durée admissible (I _{cw})	Courant assigné de courte durée admissible (I _{cw}) : 1 000 A			
Pouvoir de fermeture en court-circuit assigné (I_{cm})	Pouvoir de fermeture en court- circuit assigné (I _{cm}) : 1 000 A			

Courant de fonctionnement assigné et pouvoir de coupure assigné						
Tension de service assignée (U _e)	Courant de fonctionnement assigné (I _e)	I _(make) / I _(break)	Courant de fonctionnement assigné (I _e)	I _(make) / I _(break)		
< 500 V _{DC}	14 A	56 A	36 A	144 A		
600 V _{DC}	8 A	32 A	30 A	120 A		
700 V _{DC}	3 A	12 A	26 A	88 A		
800 V _{DC}	3 A	12 A	17 A	68 A		
900 V _{DC}	2 A	8 A	12 A	48 A		
1 000 V _{DC}	2 A	8 A	6 A	24 A		
Nombre de pôles	1	1	2	2		

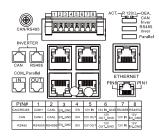
Sectionneur DC intégré


Données générales	
Nom du produit	Benedict LSA32 E 8229

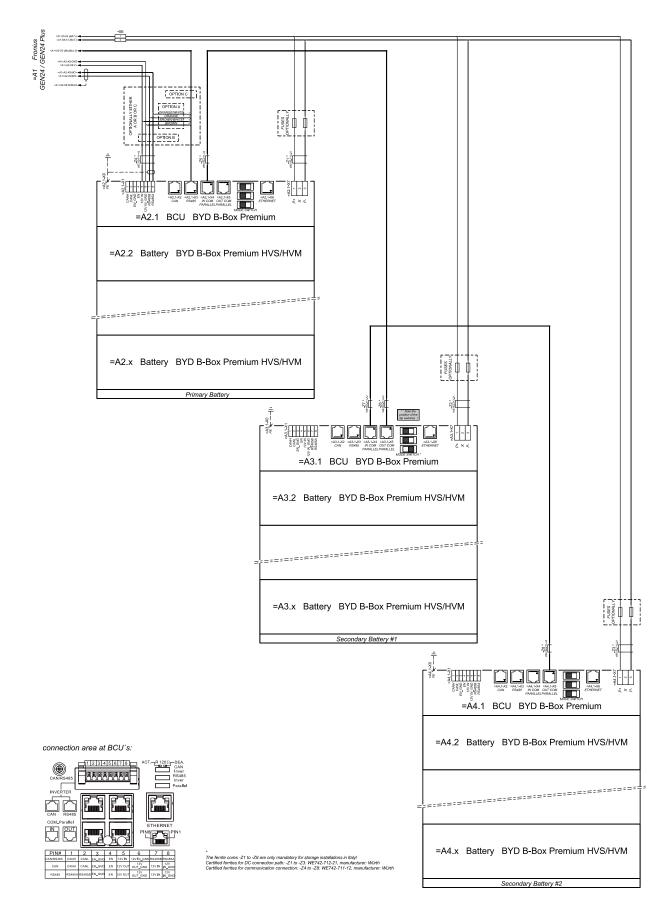
Données générales				
Tension d'isolation assignée	1 000 V _{DC}			
Tension de résistance aux ondes de choc assignée	6 kV			
Adapté à l'isolation	Oui, DC seulement			
Catégorie d'utilisation et/ou catégorie d'utilisation PV	selon CEI/EN 60947-3 catégorie d'utilisation DC-PV2			
Courant assigné de courte durée admissible (I _{cw})	Courant assigné de courte durée admissible (I _{cw}) : 1 000 A			
Pouvoir de fermeture en court-circuit assigné (I_{cm})	Pouvoir de fermeture en court- circuit assigné (I _{cm}) : 1 000 A			


Courant de fonctionnement assigné et pouvoir de coupure assigné						
Tension de service assignée (U _e)	Courant de fonctionnement assigné (I _e)	I _(make) / I _(break)	Courant de fonctionnement assigné (I _e)	I _(make) / I _(break)		
300 V _{DC}	27 A	108 A	47 A	188 A		
400 V _{DC}	20 A	80 A	45 A	180 A		
500 V _{DC}	14 A	56 A	38 A	152 A		
600 V _{DC}	11,5 A	46 A	33 A	132 A		
700 V _{DC}	7,5 A	30 A	28 A	112 A		
800 V _{DC}	5,75 A	23 A	23 A	92 A		
900 V _{DC}	4,75 A	19 A	20 A	80 A		
1 000 V _{DC}	4 A	16 A	13 A	52 A		
Nombre de pôles	1	1	2	2		

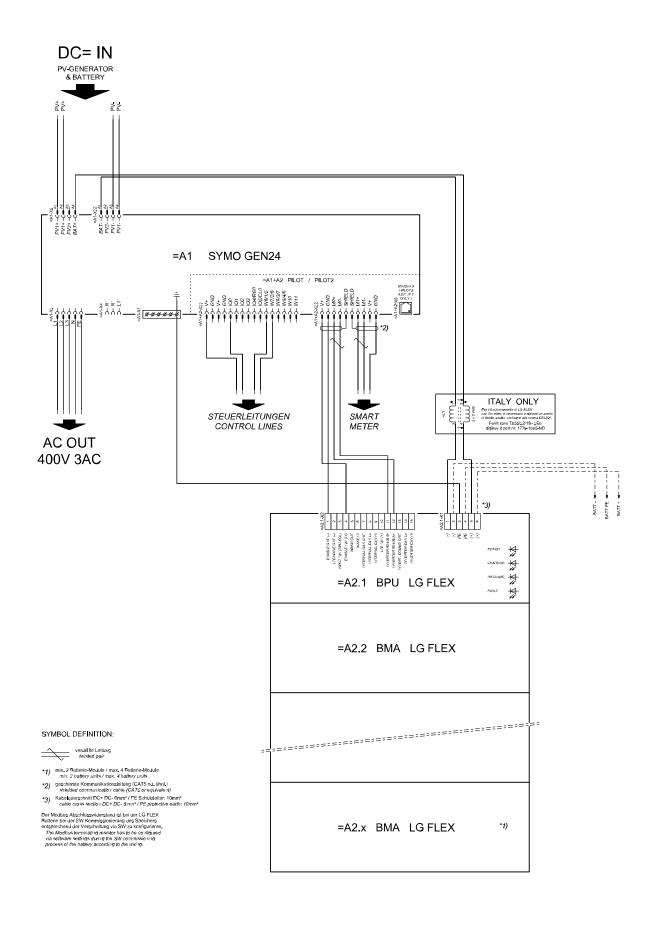
Schémas des connexions


Fronius Symo GEN24 et BYD Battery-Box Premium HVS/HV

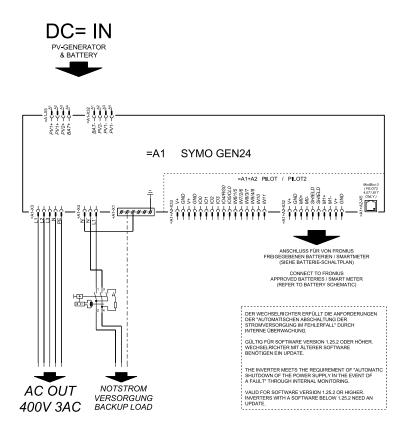
Fronius Symo GEN24 avec 2 BYD Battery-Box Premium HVS/HV connectées en parallèle

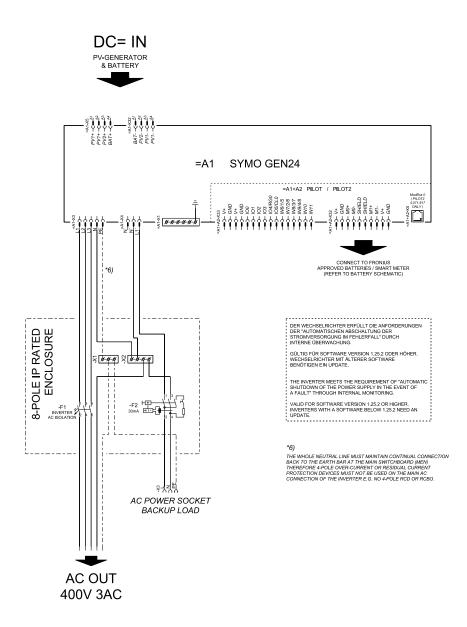


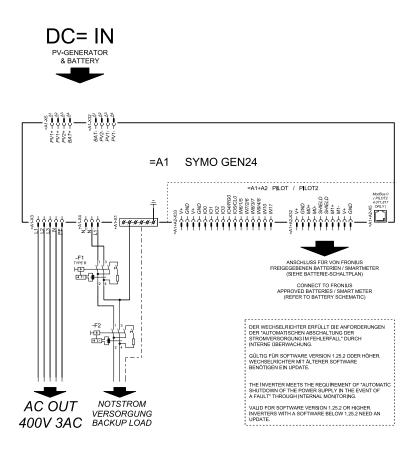
connection area at BCU's:

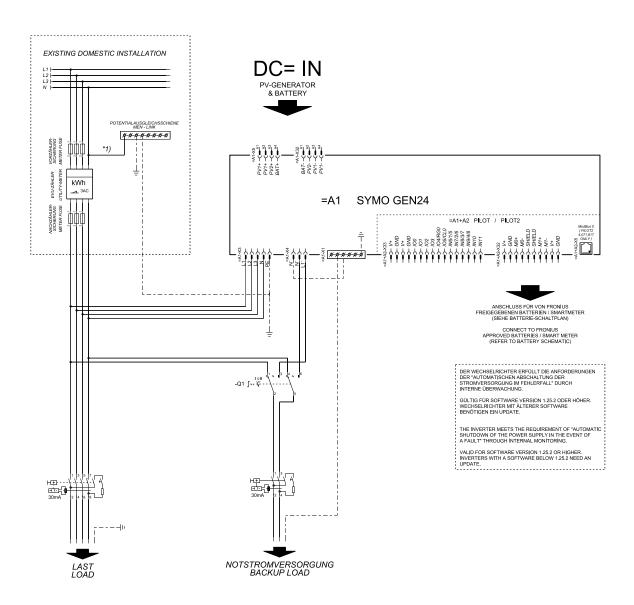


The ferrite cores -Z1 to -Z6 are only mandatory for storage installations in Italy!
Certified ferrites for DC connection path: -Z1 and -Z2: WE742-712-21, manufacturer: Würth
Certified ferrites for communication connection: -Z4 to -Z6: WE742-711-12, manufacturer: Würth

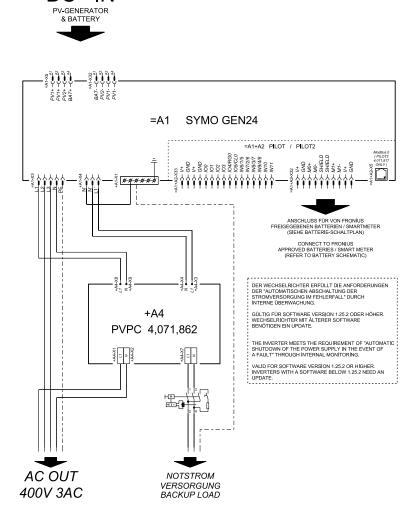

Fronius Symo GEN24 avec 3 BYD Battery-Box Premium HVS/HV connectées en parallèle


Fronius Symo GEN24 et LG RESU FLEX

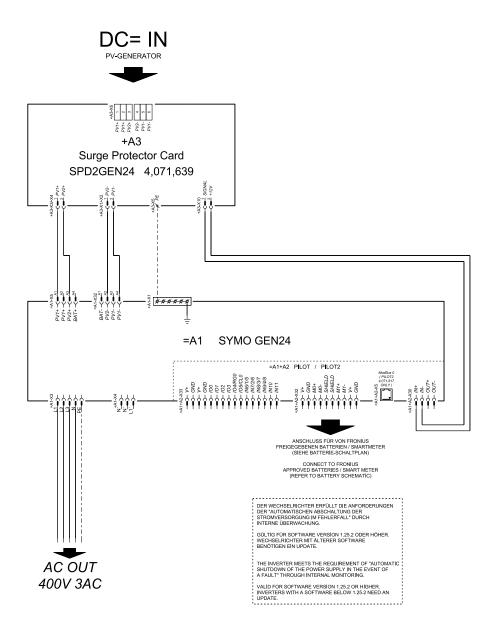

Borne de courant de secours - Point PV (OP)


Borne de courant de secours - PV Point (OP) Australie

Borne de courant de secours — PV Point (OP) avec batterie seulement pour la France

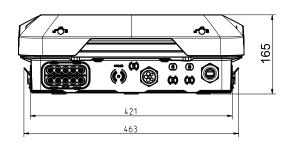


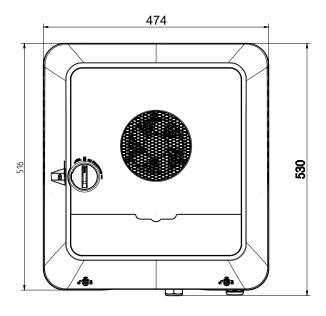
Borne de courant de secours - PV Point (OP) commutation manuelle

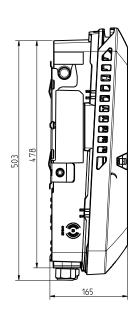


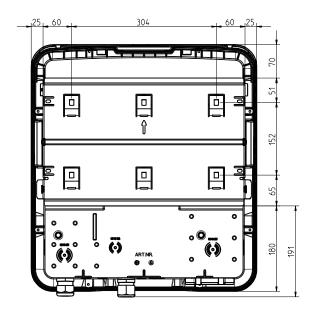
PV Point Comfort

DC= IN




Protection contre la surtension SPD




Dimensions de l'onduleur

Fronius Symo GEN24 3 - 5 kW

Fronius International GmbH

Froniusstraße 1 4643 Pettenbach Austria contact@fronius.com www.fronius.com

At <u>www.fronius.com/contact</u> you will find the contact details of all Fronius subsidiaries and Sales & Service Partners.